--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1200000 - loss:CosineSimilarityLoss base_model: sentence-transformers/all-mpnet-base-v2 widget: - source_sentence: Mutton, roasted sentences: - Imagine Creamy Butternut Squash Soup - Perrier Water, bottled - Crackers, whole-wheat - source_sentence: Beef Chuck Mock Tender Steak, lean and fat raw sentences: - Lamb, Australian leg roasted, bone-in - Chicken wing, meat and skin, cooked fried flour - Peaches, canned in heavy syrup - source_sentence: Squash, zucchini baby raw sentences: - Dandelion greens, cooked with salt - Beets, pickled canned - Cod, Atlantic canned - source_sentence: Veggie Meatballs sentences: - Salt, iodized - Sweet and Sour Sauce, ready-to-serve - Salt pork, raw - source_sentence: Beef Top Round, lean raw sentences: - Ravioli, meat-filled with tomato or meat sauce canned - Pasta Sauce, spaghetti/marinara ready-to-serve - Luncheon Slices, meatless pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: validation type: validation metrics: - type: pearson_cosine value: 0.9913128359649296 name: Pearson Cosine - type: spearman_cosine value: 0.9868170667730207 name: Spearman Cosine --- # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("jonny9f/food_embeddings") # Run inference sentences = [ 'Beef Top Round, lean raw', 'Luncheon Slices, meatless', 'Pasta Sauce, spaghetti/marinara ready-to-serve', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `validation` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9913 | | **spearman_cosine** | **0.9868** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,200,000 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:---------------------------------------------------------------|:-------------------------------------------------------------|:---------------------------------| | Beef top round roast, boneless lean select cooked | Blueberries, canned wild in heavy syrup drained | 0.21440656185150148 | | Nance, frozen unsweetened | Soymilk, unsweetened | 0.3654276132583618 | | Drops - Lemonade | Pickle relish, sweet | 0.30108280181884767 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 1 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | validation_spearman_cosine | |:------:|:-----:|:-------------:|:--------------------------:| | 0.0133 | 500 | 0.0031 | - | | 0.0267 | 1000 | 0.0028 | - | | 0.04 | 1500 | 0.0025 | - | | 0.0533 | 2000 | 0.0024 | - | | 0.0667 | 2500 | 0.0023 | - | | 0.08 | 3000 | 0.0022 | - | | 0.0933 | 3500 | 0.0021 | - | | 0.1067 | 4000 | 0.002 | - | | 0.12 | 4500 | 0.002 | - | | 0.1333 | 5000 | 0.0019 | - | | 0.1467 | 5500 | 0.0018 | - | | 0.16 | 6000 | 0.0018 | - | | 0.1733 | 6500 | 0.0017 | - | | 0.1867 | 7000 | 0.0017 | - | | 0.2 | 7500 | 0.0016 | - | | 0.2133 | 8000 | 0.0016 | - | | 0.2267 | 8500 | 0.0016 | - | | 0.24 | 9000 | 0.0015 | - | | 0.2533 | 9500 | 0.0015 | - | | 0.2667 | 10000 | 0.0015 | - | | 0.28 | 10500 | 0.0015 | - | | 0.2933 | 11000 | 0.0015 | - | | 0.3067 | 11500 | 0.0014 | - | | 0.32 | 12000 | 0.0014 | - | | 0.3333 | 12500 | 0.0013 | - | | 0.3467 | 13000 | 0.0013 | - | | 0.36 | 13500 | 0.0013 | - | | 0.3733 | 14000 | 0.0013 | - | | 0.3867 | 14500 | 0.0012 | - | | 0.4 | 15000 | 0.0012 | - | | 0.4133 | 15500 | 0.0012 | - | | 0.4267 | 16000 | 0.0012 | - | | 0.44 | 16500 | 0.0012 | - | | 0.4533 | 17000 | 0.0012 | - | | 0.4667 | 17500 | 0.0011 | - | | 0.48 | 18000 | 0.0011 | - | | 0.4933 | 18500 | 0.0011 | - | | 0.5067 | 19000 | 0.0011 | - | | 0.52 | 19500 | 0.0011 | - | | 0.5333 | 20000 | 0.0011 | - | | 0.5467 | 20500 | 0.0011 | - | | 0.56 | 21000 | 0.001 | - | | 0.5733 | 21500 | 0.001 | - | | 0.5867 | 22000 | 0.001 | - | | 0.6 | 22500 | 0.001 | - | | 0.6133 | 23000 | 0.001 | - | | 0.6267 | 23500 | 0.001 | - | | 0.64 | 24000 | 0.0009 | - | | 0.6533 | 24500 | 0.0009 | - | | 0.6667 | 25000 | 0.0009 | - | | 0.68 | 25500 | 0.0009 | - | | 0.6933 | 26000 | 0.0009 | - | | 0.7067 | 26500 | 0.0009 | - | | 0.72 | 27000 | 0.0009 | - | | 0.7333 | 27500 | 0.0009 | - | | 0.7467 | 28000 | 0.0009 | - | | 0.76 | 28500 | 0.0008 | - | | 0.7733 | 29000 | 0.0008 | - | | 0.7867 | 29500 | 0.0008 | - | | 0.8 | 30000 | 0.0008 | - | | 0.8133 | 30500 | 0.0008 | - | | 0.8267 | 31000 | 0.0008 | - | | 0.84 | 31500 | 0.0008 | - | | 0.8533 | 32000 | 0.0008 | - | | 0.8667 | 32500 | 0.0008 | - | | 0.88 | 33000 | 0.0007 | - | | 0.8933 | 33500 | 0.0007 | - | | 0.9067 | 34000 | 0.0008 | - | | 0.92 | 34500 | 0.0007 | - | | 0.9333 | 35000 | 0.0007 | - | | 0.9467 | 35500 | 0.0007 | - | | 0.96 | 36000 | 0.0007 | - | | 0.9733 | 36500 | 0.0007 | - | | 0.9867 | 37000 | 0.0007 | - | | 1.0 | 37500 | 0.0007 | 0.9799 | | 0.0133 | 500 | 0.0009 | - | | 0.0267 | 1000 | 0.0011 | - | | 0.04 | 1500 | 0.0011 | - | | 0.0533 | 2000 | 0.001 | - | | 0.0667 | 2500 | 0.001 | - | | 0.08 | 3000 | 0.001 | - | | 0.0933 | 3500 | 0.001 | - | | 0.1067 | 4000 | 0.001 | - | | 0.12 | 4500 | 0.001 | - | | 0.1333 | 5000 | 0.001 | - | | 0.1467 | 5500 | 0.001 | - | | 0.16 | 6000 | 0.0009 | - | | 0.1733 | 6500 | 0.0009 | - | | 0.1867 | 7000 | 0.0009 | - | | 0.2 | 7500 | 0.0009 | - | | 0.2133 | 8000 | 0.001 | - | | 0.2267 | 8500 | 0.0009 | - | | 0.24 | 9000 | 0.0009 | - | | 0.2533 | 9500 | 0.0009 | - | | 0.2667 | 10000 | 0.0008 | - | | 0.28 | 10500 | 0.0009 | - | | 0.2933 | 11000 | 0.0008 | - | | 0.3067 | 11500 | 0.0008 | - | | 0.32 | 12000 | 0.0008 | - | | 0.3333 | 12500 | 0.0008 | - | | 0.3467 | 13000 | 0.0008 | - | | 0.36 | 13500 | 0.0008 | - | | 0.3733 | 14000 | 0.0008 | - | | 0.3867 | 14500 | 0.0008 | - | | 0.4 | 15000 | 0.0008 | - | | 0.4133 | 15500 | 0.0007 | - | | 0.4267 | 16000 | 0.0007 | - | | 0.44 | 16500 | 0.0008 | - | | 0.4533 | 17000 | 0.0007 | - | | 0.4667 | 17500 | 0.0007 | - | | 0.48 | 18000 | 0.0007 | - | | 0.4933 | 18500 | 0.0007 | - | | 0.5067 | 19000 | 0.0007 | - | | 0.52 | 19500 | 0.0007 | - | | 0.5333 | 20000 | 0.0007 | - | | 0.5467 | 20500 | 0.0007 | - | | 0.56 | 21000 | 0.0007 | - | | 0.5733 | 21500 | 0.0006 | - | | 0.5867 | 22000 | 0.0007 | - | | 0.6 | 22500 | 0.0006 | - | | 0.6133 | 23000 | 0.0006 | - | | 0.6267 | 23500 | 0.0006 | - | | 0.64 | 24000 | 0.0006 | - | | 0.6533 | 24500 | 0.0006 | - | | 0.6667 | 25000 | 0.0006 | - | | 0.68 | 25500 | 0.0006 | - | | 0.6933 | 26000 | 0.0006 | - | | 0.7067 | 26500 | 0.0006 | - | | 0.72 | 27000 | 0.0006 | - | | 0.7333 | 27500 | 0.0006 | - | | 0.7467 | 28000 | 0.0006 | - | | 0.76 | 28500 | 0.0005 | - | | 0.7733 | 29000 | 0.0005 | - | | 0.7867 | 29500 | 0.0006 | - | | 0.8 | 30000 | 0.0005 | - | | 0.8133 | 30500 | 0.0005 | - | | 0.8267 | 31000 | 0.0005 | - | | 0.84 | 31500 | 0.0005 | - | | 0.8533 | 32000 | 0.0005 | - | | 0.8667 | 32500 | 0.0005 | - | | 0.88 | 33000 | 0.0005 | - | | 0.8933 | 33500 | 0.0005 | - | | 0.9067 | 34000 | 0.0005 | - | | 0.92 | 34500 | 0.0005 | - | | 0.9333 | 35000 | 0.0005 | - | | 0.9467 | 35500 | 0.0005 | - | | 0.96 | 36000 | 0.0005 | - | | 0.9733 | 36500 | 0.0005 | - | | 0.9867 | 37000 | 0.0005 | - | | 1.0 | 37500 | 0.0005 | 0.9850 | | 0.0133 | 500 | 0.0004 | - | | 0.0267 | 1000 | 0.0005 | - | | 0.04 | 1500 | 0.0005 | - | | 0.0533 | 2000 | 0.0005 | - | | 0.0667 | 2500 | 0.0005 | - | | 0.08 | 3000 | 0.0005 | - | | 0.0933 | 3500 | 0.0005 | - | | 0.1067 | 4000 | 0.0004 | - | | 0.12 | 4500 | 0.0004 | - | | 0.1333 | 5000 | 0.0004 | - | | 0.1467 | 5500 | 0.0004 | - | | 0.16 | 6000 | 0.0004 | - | | 0.1733 | 6500 | 0.0004 | - | | 0.1867 | 7000 | 0.0004 | - | | 0.2 | 7500 | 0.0004 | - | | 0.2133 | 8000 | 0.0004 | - | | 0.2267 | 8500 | 0.0004 | - | | 0.24 | 9000 | 0.0004 | - | | 0.2533 | 9500 | 0.0004 | - | | 0.2667 | 10000 | 0.0004 | - | | 0.28 | 10500 | 0.0004 | - | | 0.2933 | 11000 | 0.0004 | - | | 0.3067 | 11500 | 0.0004 | - | | 0.32 | 12000 | 0.0004 | - | | 0.3333 | 12500 | 0.0004 | - | | 0.3467 | 13000 | 0.0004 | - | | 0.36 | 13500 | 0.0004 | - | | 0.3733 | 14000 | 0.0004 | - | | 0.3867 | 14500 | 0.0004 | - | | 0.4 | 15000 | 0.0004 | - | | 0.4133 | 15500 | 0.0004 | - | | 0.4267 | 16000 | 0.0004 | - | | 0.44 | 16500 | 0.0004 | - | | 0.4533 | 17000 | 0.0004 | - | | 0.4667 | 17500 | 0.0004 | - | | 0.48 | 18000 | 0.0004 | - | | 0.4933 | 18500 | 0.0004 | - | | 0.5067 | 19000 | 0.0004 | - | | 0.52 | 19500 | 0.0004 | - | | 0.5333 | 20000 | 0.0004 | - | | 0.5467 | 20500 | 0.0004 | - | | 0.56 | 21000 | 0.0004 | - | | 0.5733 | 21500 | 0.0004 | - | | 0.5867 | 22000 | 0.0004 | - | | 0.6 | 22500 | 0.0004 | - | | 0.6133 | 23000 | 0.0004 | - | | 0.6267 | 23500 | 0.0004 | - | | 0.64 | 24000 | 0.0004 | - | | 0.6533 | 24500 | 0.0004 | - | | 0.6667 | 25000 | 0.0004 | - | | 0.68 | 25500 | 0.0004 | - | | 0.6933 | 26000 | 0.0004 | - | | 0.7067 | 26500 | 0.0004 | - | | 0.72 | 27000 | 0.0004 | - | | 0.7333 | 27500 | 0.0004 | - | | 0.7467 | 28000 | 0.0004 | - | | 0.76 | 28500 | 0.0004 | - | | 0.7733 | 29000 | 0.0004 | - | | 0.7867 | 29500 | 0.0004 | - | | 0.8 | 30000 | 0.0004 | - | | 0.8133 | 30500 | 0.0004 | - | | 0.8267 | 31000 | 0.0004 | - | | 0.84 | 31500 | 0.0004 | - | | 0.8533 | 32000 | 0.0004 | - | | 0.8667 | 32500 | 0.0004 | - | | 0.88 | 33000 | 0.0004 | - | | 0.8933 | 33500 | 0.0004 | - | | 0.9067 | 34000 | 0.0004 | - | | 0.92 | 34500 | 0.0004 | - | | 0.9333 | 35000 | 0.0004 | - | | 0.9467 | 35500 | 0.0004 | - | | 0.96 | 36000 | 0.0004 | - | | 0.9733 | 36500 | 0.0004 | - | | 0.9867 | 37000 | 0.0004 | - | | 1.0 | 37500 | 0.0004 | 0.9868 |
### Framework Versions - Python: 3.11.3 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```