{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d118cb79b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d118cb79bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d118cb79c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d118cb79cf0>", "_build": "<function ActorCriticPolicy._build at 0x7d118cb79d80>", "forward": "<function ActorCriticPolicy.forward at 0x7d118cb79e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d118cb79ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d118cb79f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7d118cb79fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d118cb7a050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d118cb7a0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d118cb7a170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d118cb16040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714748716812214099, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANoUxD0VN1M/2scjPcTslb6E3EW8Fe3pvAAAAAAAAAAAzTxXuxQIqLrxjjG5BFMntOaNfzqF80s4AACAPwAAgD+N/4m9H5WhuR6YLLXxSJew5/EeO5qbZTQAAIA/AACAPzNQiz0pwGK65+uGvKszbLYHeTk7kN7TNQAAgD8AAIA/IJNQPuOsgz/sCJg+rhievtXQdD640FE9AAAAAAAAAAAzA6O89hA1usacKztAFLW1evcCu7YeR7oAAIA/AACAP01mR76hqaK8Ip7iut0BR7nRHBI+u08bOgAAgD8AAIA/Rs0RPsN8LTsb5wi7LmnWuDDp5Dw9kbu5AACAPwAAgD8zxpU8cccwu8a/5LyqRPQ8Yc84PDD3zr0AAIA/AACAP2ZwTb3hlJK6MZ0EN57P6zHo5606WbIYtgAAgD8AAIA/ZogFPfYEerrnozU5NB7ENL7YPzsydU+4AACAPwAAgD+ak7I8FOSSuh2rh7u82sW2ijXLOkYZmzoAAIA/AACAP1ojwT32aEg58ig3O6Qxz7YSbRq7bUtYugAAgD8AAIA/jc+uPRhmmj19Q3O9UagCvqdu5Ty/Dsy8AAAAAAAAAAAak1w9rnmsultE3bnbAOe0bdNkOm37SDQAAIA/AACAP9ohSz6G7gg/ZrAvvvume76dKew8FUYPPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGGKF6zE74mMAWyUTegDjAF0lEdAkbN2i5/b03V9lChoBkdAZfXwEQoTf2gHTegDaAhHQJG5rXOGCZp1fZQoaAZHQFnTfqX4TK1oB03oA2gIR0CRvwaQFLWadX2UKGgGR0BiUkERraduaAdN6ANoCEdAkcfLp7kXDXV9lChoBkdAYZs1O0svqWgHTegDaAhHQJHJqLAHmih1fZQoaAZHQGZxZmRNh3JoB03oA2gIR0CRz0/Aj6eodX2UKGgGR0BfjNic5Ke1aAdN6ANoCEdAkdCa1TisGXV9lChoBkdAZNUoNNJvpGgHTegDaAhHQJHuq9K28Zl1fZQoaAZHQGUq0KArhBJoB03oA2gIR0CR7zN7jT8YdX2UKGgGR0Bc68NDtw71aAdN6ANoCEdAkfKJda+vhnV9lChoBkdAYEdLdvbXYmgHTegDaAhHQJH2EgLZzxR1fZQoaAZHQGCqV7pmmLtoB03oA2gIR0CR+1QVsUItdX2UKGgGR0Bdnpn+Q2deaAdN6ANoCEdAkfwDMFEApHV9lChoBkdAYLh6DXe3yGgHTegDaAhHQJIBZtelbeN1fZQoaAZHQGHui/fwZwZoB03oA2gIR0CSBkNb1RLsdX2UKGgGR0BjxvLV4HHFaAdN6ANoCEdAkgdQxN7BwnV9lChoBkdAXTGGDcuanmgHTegDaAhHQJIIBIg/1QJ1fZQoaAZHQGUNbe/Ho5hoB03oA2gIR0CSDRkQPI4mdX2UKGgGR0Bk+zHp8neBaAdN6ANoCEdAkhDjOC5Et3V9lChoBkdAZhOYzi0fHWgHTegDaAhHQJIbDRYzSCx1fZQoaAZHQGB+g5R0lqtoB03oA2gIR0CSHaa2F36idX2UKGgGR0Biekn1FpfyaAdN6ANoCEdAkiV30PH1e3V9lChoBkdAZKBfCQ9zO2gHTegDaAhHQJIm7MHKOkt1fZQoaAZHP/uOmBOHnEFoB00mAWgIR0CSKBU5dWyUdX2UKGgGR0BkO/exfOUuaAdN6ANoCEdAkkOLt/nW8XV9lChoBkdAZScuPmxMWWgHTegDaAhHQJJD9MewLVp1fZQoaAZHQGQqWOAAhjhoB03oA2gIR0CSRw0xdpqRdX2UKGgGR0Bjp78iwB5paAdN6ANoCEdAkkrZ9JBgNXV9lChoBkdAYfXBuXNTtWgHTegDaAhHQJJS4Jng5zZ1fZQoaAZHQGRHxiG34KxoB03oA2gIR0CSU7hf0EowdX2UKGgGR0BZ8tsabWmQaAdN6ANoCEdAklmQYUFjeHV9lChoBkdAUHuRZEDyOWgHTQABaAhHQJJdD9LpRoB1fZQoaAZHQGOtaA4GUwBoB03oA2gIR0CSXrBhx5s1dX2UKGgGR0BgLGIyj59FaAdN6ANoCEdAkl+60MPSUnV9lChoBkdAYLFeiSJTEWgHTegDaAhHQJJgZTdcjaB1fZQoaAZHQGQGo4VARkFoB03oA2gIR0CSZRaC+UQkdX2UKGgGR0BiWJ08vEjxaAdN6ANoCEdAknHg6Mir1nV9lChoBkdAWhzsSkCV8mgHTegDaAhHQJJzyR4hUzd1fZQoaAZHQGVLCFK02LpoB03oA2gIR0CSeX/DLr5ZdX2UKGgGR0BmCOnqFAVxaAdN6ANoCEdAknq21MM7VHV9lChoBkdAZMadd3SrpGgHTegDaAhHQJJ8Bzr/sE91fZQoaAZHQGFx3MY/FBJoB03oA2gIR0CSmDzBhx5tdX2UKGgGR0Bis+Cwr1/UaAdN6ANoCEdAkpiRU3n6mHV9lChoBkdAYicZIg/1QWgHTegDaAhHQJKbcAzYVZd1fZQoaAZHQGMSpmEoOQRoB03oA2gIR0CSpG7D2rXEdX2UKGgGR0Bn2qKWLP2PaAdN6ANoCEdAkqUxbbDdg3V9lChoBkdAZbts54nndWgHTegDaAhHQJKrZ4FA3UB1fZQoaAZHQF3RXpW3jMpoB03oA2gIR0CSsAN21UlzdX2UKGgGR0BlW/uE25xzaAdN6ANoCEdAkrIasZHd43V9lChoBkdAZGPf642CNGgHTegDaAhHQJKzdVAAyVR1fZQoaAZHQGMGBEjPfKpoB03oA2gIR0CStHQfZElWdX2UKGgGR0BSRwzguRLcaAdN6ANoCEdAkrk/ZIxxk3V9lChoBkdAcINDTBqKxmgHTT0CaAhHQJK9PtBv73x1fZQoaAZHQHKn/r0J4SpoB00cAmgIR0CSvf+aBqbjdX2UKGgGR0BnBHxJ/XoUaAdN6ANoCEdAksRsRg7YCnV9lChoBkdAYoDW3BpHqmgHTegDaAhHQJLGIrhBJI11fZQoaAZHQHAra3I+4b1oB026A2gIR0CSy0Dklu3udX2UKGgGR0BhOOOlwcYJaAdN6ANoCEdAksvPyoXKsHV9lChoBkdAbbr6/IsAemgHTXQCaAhHQJLMGnqFAVx1fZQoaAZHQGIaWKVII4VoB03oA2gIR0CSzOniNsFddX2UKGgGR0BgpaWVu76IaAdN6ANoCEdAkussOoYNzHV9lChoBkdAb3eC/47A+WgHTQcDaAhHQJL044+8oQZ1fZQoaAZHQGTwQBYFJQNoB03oA2gIR0CS95cBU70WdX2UKGgGR0BwgouPFNtZaAdNjwFoCEdAkvg4HC4z8HV9lChoBkdAbRVD/lyR0WgHTRcDaAhHQJL8cC1Z1V51fZQoaAZHQGCI2ZqmCRRoB03oA2gIR0CS/SqXF98adX2UKGgGR0BjUZPZZjhDaAdN6ANoCEdAkwAAzk6tDHV9lChoBkdAZnsDsdDIBGgHTegDaAhHQJMCKlyimEZ1fZQoaAZHQGOYvG6wt8NoB03oA2gIR0CTAr3lCCz1dX2UKGgGR0BvqNbaAWi2aAdN5QJoCEdAkwlpEc81XXV9lChoBkdAYoLD4QBgeGgHTegDaAhHQJMKwFSsKb91fZQoaAZHQHBEGITGo75oB03zAmgIR0CTCuk8ifQKdX2UKGgGR0BkWutyPuG9aAdN6ANoCEdAkwuAxJul43V9lChoBkdAY9LyCFsYVWgHTegDaAhHQJMSNVktmL91fZQoaAZHQG/uiGnGbTdoB03kA2gIR0CTFE0FKTStdX2UKGgGR0Bump31SOzZaAdNzwFoCEdAkxa4x+KCQXV9lChoBkdAX97rhR64UmgHTegDaAhHQJMcuJbdJrd1fZQoaAZHQG/TyamXPZ9oB03qAWgIR0CTIFuBczIndX2UKGgGR0BgTgw482aVaAdN6ANoCEdAkzj/wuuie3V9lChoBkdAbr1iZv1lG2gHTRoDaAhHQJM5VQhwEQp1fZQoaAZHQHACGsV+I/JoB02gAWgIR0CTOZ84PwuvdX2UKGgGR0BbBGsmv4dqaAdN6ANoCEdAk0SKt1ZDA3V9lChoBkdAcUD+s5n14GgHTTIDaAhHQJNF68Zk0791fZQoaAZHQGSqk9t/FzdoB03oA2gIR0CTSTecx0uEdX2UKGgGR0BwKEKMNtqIaAdNdQFoCEdAk00micoYvXV9lChoBkdAW7BBD5TIemgHTegDaAhHQJNPdeiSJTF1fZQoaAZHQHDMZZB9kSVoB01KAWgIR0CTUQKJEYwZdX2UKGgGR0BgjRJI1+AmaAdN6ANoCEdAk1Y07nxJ/XV9lChoBkdAcNELfk3juWgHTaMDaAhHQJNaGEOAiFF1fZQoaAZHQG4ICEg4ffZoB02hA2gIR0CTW7KCxu89dX2UKGgGR0BiUS8pTdcjaAdN6ANoCEdAk1/UTQE6k3V9lChoBkdAcpRYSg5BC2gHTVYCaAhHQJNhYGMXJo11fZQoaAZHQG4ySQPqcExoB02xAWgIR0CTYd1cMVk+dX2UKGgGR0BwohfXwsoVaAdNngNoCEdAk2KLgTAWSHV9lChoBkdAbluwIMSbpmgHTX0CaAhHQJNi/W5H3Dh1fZQoaAZHQGKAagM+eOJoB03oA2gIR0CTZ+hDgIhRdX2UKGgGR0BjisYGdI5HaAdN6ANoCEdAk2mYlyBClnV9lChoBkdAX50ukDZDiWgHTegDaAhHQJNuZLDhtLt1fZQoaAZHQHARPHtF8XxoB02SAmgIR0CTcJ6fJ3gUdX2UKGgGR0BuTHEXLvCuaAdNwgFoCEdAk3RFUVBUrHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |