def test_rag(pipeline, query): docs = vectordb.similarity_search_with_score(query) context = [] for doc,score in docs: if(score<7): doc_details = doc.to_json()['kwargs'] context.append( doc_details['page_content']) if(len(context)!=0): messages = [{"role": "user", "content": "Basándote en la siguiente información: " + "\n".join(context) + "\n Responde en castellano a la pregunta: " + query}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) answer = outputs[0]["generated_text"] return answer[answer.rfind("[/INST]")+8:],docs else: return "No tengo información para responder a esta pregunta",docs