jordan2889 commited on
Commit
27e84d6
·
verified ·
1 Parent(s): 1b1da48

jordan2889/classify-phishing_real_1

Browse files
Files changed (5) hide show
  1. README.md +96 -196
  2. config.json +42 -0
  3. model.safetensors +3 -0
  4. trainer_state.json +2499 -0
  5. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,99 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: albert/albert-base-v2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: classify-phishing_real_1
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # classify-phishing_real_1
20
+
21
+ This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1185
24
+ - Accuracy: 0.9645
25
+ - F1: 0.9645
26
+ - Precision: 0.9645
27
+ - Recall: 0.9645
28
+ - Accuracy Label 0: 0.9708
29
+ - Accuracy Label 1: 0.9559
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 32
50
+ - eval_batch_size: 32
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 64
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 500
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label 0 | Accuracy Label 1 |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:----------------:|:----------------:|
63
+ | 0.4991 | 0.1030 | 100 | 0.4748 | 0.7925 | 0.7819 | 0.8136 | 0.7925 | 0.9508 | 0.5747 |
64
+ | 0.3087 | 0.2060 | 200 | 0.3052 | 0.8799 | 0.8793 | 0.8799 | 0.8799 | 0.9189 | 0.8262 |
65
+ | 0.2974 | 0.3090 | 300 | 0.2390 | 0.9093 | 0.9094 | 0.9095 | 0.9093 | 0.9181 | 0.8972 |
66
+ | 0.2644 | 0.4119 | 400 | 0.3068 | 0.8663 | 0.8670 | 0.8887 | 0.8663 | 0.7899 | 0.9715 |
67
+ | 0.223 | 0.5149 | 500 | 0.2122 | 0.9154 | 0.9158 | 0.9195 | 0.9154 | 0.8905 | 0.9495 |
68
+ | 0.215 | 0.6179 | 600 | 0.2011 | 0.9229 | 0.9222 | 0.9252 | 0.9229 | 0.9714 | 0.8561 |
69
+ | 0.1419 | 0.7209 | 700 | 0.1836 | 0.9305 | 0.9300 | 0.9318 | 0.9305 | 0.9690 | 0.8775 |
70
+ | 0.1511 | 0.8239 | 800 | 0.1828 | 0.9305 | 0.9308 | 0.9327 | 0.9305 | 0.9145 | 0.9526 |
71
+ | 0.173 | 0.9269 | 900 | 0.1544 | 0.9430 | 0.9428 | 0.9433 | 0.9430 | 0.9666 | 0.9107 |
72
+ | 0.0986 | 1.0299 | 1000 | 0.1513 | 0.9429 | 0.9430 | 0.9435 | 0.9429 | 0.9384 | 0.9491 |
73
+ | 0.1403 | 1.1329 | 1100 | 0.1515 | 0.9426 | 0.9429 | 0.9444 | 0.9426 | 0.9278 | 0.9631 |
74
+ | 0.1133 | 1.2358 | 1200 | 0.1394 | 0.9475 | 0.9475 | 0.9475 | 0.9475 | 0.9531 | 0.9397 |
75
+ | 0.1117 | 1.3388 | 1300 | 0.1525 | 0.9457 | 0.9459 | 0.9467 | 0.9457 | 0.9371 | 0.9576 |
76
+ | 0.1277 | 1.4418 | 1400 | 0.1311 | 0.9490 | 0.9491 | 0.9492 | 0.9490 | 0.9501 | 0.9475 |
77
+ | 0.0886 | 1.5448 | 1500 | 0.1375 | 0.9503 | 0.9503 | 0.9503 | 0.9503 | 0.9628 | 0.9331 |
78
+ | 0.1273 | 1.6478 | 1600 | 0.1297 | 0.9533 | 0.9533 | 0.9535 | 0.9533 | 0.9536 | 0.9529 |
79
+ | 0.1102 | 1.7508 | 1700 | 0.1136 | 0.9578 | 0.9578 | 0.9578 | 0.9578 | 0.9637 | 0.9498 |
80
+ | 0.0793 | 1.8538 | 1800 | 0.1269 | 0.9562 | 0.9561 | 0.9563 | 0.9562 | 0.9718 | 0.9348 |
81
+ | 0.0995 | 1.9567 | 1900 | 0.1129 | 0.9591 | 0.9590 | 0.9591 | 0.9591 | 0.9702 | 0.9437 |
82
+ | 0.0846 | 2.0597 | 2000 | 0.1362 | 0.9533 | 0.9534 | 0.9543 | 0.9533 | 0.9422 | 0.9685 |
83
+ | 0.096 | 2.1627 | 2100 | 0.1383 | 0.9563 | 0.9564 | 0.9572 | 0.9563 | 0.9467 | 0.9696 |
84
+ | 0.0797 | 2.2657 | 2200 | 0.1137 | 0.9620 | 0.9619 | 0.9619 | 0.9620 | 0.9711 | 0.9494 |
85
+ | 0.0602 | 2.3687 | 2300 | 0.1211 | 0.9609 | 0.9609 | 0.9609 | 0.9609 | 0.9664 | 0.9532 |
86
+ | 0.0951 | 2.4717 | 2400 | 0.1194 | 0.9614 | 0.9615 | 0.9615 | 0.9614 | 0.9628 | 0.9596 |
87
+ | 0.0343 | 2.5747 | 2500 | 0.1237 | 0.9629 | 0.9629 | 0.9630 | 0.9629 | 0.9624 | 0.9634 |
88
+ | 0.0512 | 2.6777 | 2600 | 0.1263 | 0.9625 | 0.9625 | 0.9625 | 0.9625 | 0.9738 | 0.9471 |
89
+ | 0.0532 | 2.7806 | 2700 | 0.1229 | 0.9633 | 0.9633 | 0.9633 | 0.9633 | 0.9706 | 0.9533 |
90
+ | 0.0673 | 2.8836 | 2800 | 0.1206 | 0.9644 | 0.9644 | 0.9644 | 0.9644 | 0.9679 | 0.9596 |
91
+ | 0.0209 | 2.9866 | 2900 | 0.1185 | 0.9645 | 0.9645 | 0.9645 | 0.9645 | 0.9709 | 0.9556 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.42.3
97
+ - Pytorch 2.2.1
98
+ - Datasets 2.20.0
99
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "albert/albert-base-v2",
3
+ "architectures": [
4
+ "AlbertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "benign",
18
+ "1": "phishing"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "inner_group_num": 1,
22
+ "intermediate_size": 3072,
23
+ "label2id": {
24
+ "benign": 0,
25
+ "phishing": 1
26
+ },
27
+ "layer_norm_eps": 1e-12,
28
+ "max_position_embeddings": 512,
29
+ "model_type": "albert",
30
+ "net_structure_type": 0,
31
+ "num_attention_heads": 12,
32
+ "num_hidden_groups": 1,
33
+ "num_hidden_layers": 12,
34
+ "num_memory_blocks": 0,
35
+ "pad_token_id": 0,
36
+ "position_embedding_type": "absolute",
37
+ "problem_type": "single_label_classification",
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.42.3",
40
+ "type_vocab_size": 2,
41
+ "vocab_size": 30000
42
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18b62ebe1c69a653921d7a9bca3909dab9ff269b681ad1022e0433810ee7cfe8
3
+ size 46743912
trainer_state.json ADDED
@@ -0,0 +1,2499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 100,
6
+ "global_step": 2913,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010298661174047374,
13
+ "grad_norm": 11.615089416503906,
14
+ "learning_rate": 4.0000000000000003e-07,
15
+ "loss": 0.6748,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.02059732234809475,
20
+ "grad_norm": 10.92617130279541,
21
+ "learning_rate": 8.000000000000001e-07,
22
+ "loss": 0.6647,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.030895983522142123,
27
+ "grad_norm": 10.422063827514648,
28
+ "learning_rate": 1.2000000000000002e-06,
29
+ "loss": 0.6572,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.0411946446961895,
34
+ "grad_norm": 11.15770149230957,
35
+ "learning_rate": 1.6000000000000001e-06,
36
+ "loss": 0.6352,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.05149330587023687,
41
+ "grad_norm": 9.185620307922363,
42
+ "learning_rate": 2.0000000000000003e-06,
43
+ "loss": 0.6052,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.061791967044284246,
48
+ "grad_norm": 9.457632064819336,
49
+ "learning_rate": 2.4000000000000003e-06,
50
+ "loss": 0.5875,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.07209062821833162,
55
+ "grad_norm": 10.167529106140137,
56
+ "learning_rate": 2.8000000000000003e-06,
57
+ "loss": 0.5659,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.082389289392379,
62
+ "grad_norm": 13.378604888916016,
63
+ "learning_rate": 3.2000000000000003e-06,
64
+ "loss": 0.5659,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.09268795056642637,
69
+ "grad_norm": 17.715898513793945,
70
+ "learning_rate": 3.6000000000000003e-06,
71
+ "loss": 0.5147,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.10298661174047374,
76
+ "grad_norm": 16.888174057006836,
77
+ "learning_rate": 4.000000000000001e-06,
78
+ "loss": 0.4991,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.10298661174047374,
83
+ "eval_accuracy": 0.7925463439752832,
84
+ "eval_accuracy_label_0": 0.9507723080342261,
85
+ "eval_accuracy_label_1": 0.5747284687165366,
86
+ "eval_f1": 0.7818901179048853,
87
+ "eval_loss": 0.47476595640182495,
88
+ "eval_precision": 0.8135697505549326,
89
+ "eval_recall": 0.7925463439752832,
90
+ "eval_runtime": 28.6334,
91
+ "eval_samples_per_second": 542.583,
92
+ "eval_steps_per_second": 16.973,
93
+ "step": 100
94
+ },
95
+ {
96
+ "epoch": 0.11328527291452112,
97
+ "grad_norm": 12.777868270874023,
98
+ "learning_rate": 4.4e-06,
99
+ "loss": 0.4864,
100
+ "step": 110
101
+ },
102
+ {
103
+ "epoch": 0.12358393408856849,
104
+ "grad_norm": 14.114547729492188,
105
+ "learning_rate": 4.800000000000001e-06,
106
+ "loss": 0.437,
107
+ "step": 120
108
+ },
109
+ {
110
+ "epoch": 0.13388259526261587,
111
+ "grad_norm": 19.731557846069336,
112
+ "learning_rate": 5.2e-06,
113
+ "loss": 0.409,
114
+ "step": 130
115
+ },
116
+ {
117
+ "epoch": 0.14418125643666324,
118
+ "grad_norm": 14.552102088928223,
119
+ "learning_rate": 5.600000000000001e-06,
120
+ "loss": 0.4041,
121
+ "step": 140
122
+ },
123
+ {
124
+ "epoch": 0.15447991761071062,
125
+ "grad_norm": 13.959667205810547,
126
+ "learning_rate": 6e-06,
127
+ "loss": 0.3836,
128
+ "step": 150
129
+ },
130
+ {
131
+ "epoch": 0.164778578784758,
132
+ "grad_norm": 14.573174476623535,
133
+ "learning_rate": 6.4000000000000006e-06,
134
+ "loss": 0.3685,
135
+ "step": 160
136
+ },
137
+ {
138
+ "epoch": 0.17507723995880536,
139
+ "grad_norm": 16.22774887084961,
140
+ "learning_rate": 6.800000000000001e-06,
141
+ "loss": 0.3229,
142
+ "step": 170
143
+ },
144
+ {
145
+ "epoch": 0.18537590113285274,
146
+ "grad_norm": 19.044815063476562,
147
+ "learning_rate": 7.2000000000000005e-06,
148
+ "loss": 0.3893,
149
+ "step": 180
150
+ },
151
+ {
152
+ "epoch": 0.1956745623069001,
153
+ "grad_norm": 45.681358337402344,
154
+ "learning_rate": 7.600000000000001e-06,
155
+ "loss": 0.304,
156
+ "step": 190
157
+ },
158
+ {
159
+ "epoch": 0.2059732234809475,
160
+ "grad_norm": 29.214599609375,
161
+ "learning_rate": 8.000000000000001e-06,
162
+ "loss": 0.3087,
163
+ "step": 200
164
+ },
165
+ {
166
+ "epoch": 0.2059732234809475,
167
+ "eval_accuracy": 0.8798918640576725,
168
+ "eval_accuracy_label_0": 0.9188798755417269,
169
+ "eval_accuracy_label_1": 0.8262199785834481,
170
+ "eval_f1": 0.8792919938020355,
171
+ "eval_loss": 0.3051721453666687,
172
+ "eval_precision": 0.8799368067929555,
173
+ "eval_recall": 0.8798918640576725,
174
+ "eval_runtime": 28.5459,
175
+ "eval_samples_per_second": 544.247,
176
+ "eval_steps_per_second": 17.025,
177
+ "step": 200
178
+ },
179
+ {
180
+ "epoch": 0.21627188465499486,
181
+ "grad_norm": 15.713203430175781,
182
+ "learning_rate": 8.400000000000001e-06,
183
+ "loss": 0.3222,
184
+ "step": 210
185
+ },
186
+ {
187
+ "epoch": 0.22657054582904224,
188
+ "grad_norm": 15.416417121887207,
189
+ "learning_rate": 8.8e-06,
190
+ "loss": 0.3231,
191
+ "step": 220
192
+ },
193
+ {
194
+ "epoch": 0.2368692070030896,
195
+ "grad_norm": 15.711112022399902,
196
+ "learning_rate": 9.200000000000002e-06,
197
+ "loss": 0.2795,
198
+ "step": 230
199
+ },
200
+ {
201
+ "epoch": 0.24716786817713698,
202
+ "grad_norm": 36.23487854003906,
203
+ "learning_rate": 9.600000000000001e-06,
204
+ "loss": 0.3044,
205
+ "step": 240
206
+ },
207
+ {
208
+ "epoch": 0.25746652935118436,
209
+ "grad_norm": 34.81510543823242,
210
+ "learning_rate": 1e-05,
211
+ "loss": 0.2941,
212
+ "step": 250
213
+ },
214
+ {
215
+ "epoch": 0.26776519052523173,
216
+ "grad_norm": 27.128246307373047,
217
+ "learning_rate": 1.04e-05,
218
+ "loss": 0.2958,
219
+ "step": 260
220
+ },
221
+ {
222
+ "epoch": 0.2780638516992791,
223
+ "grad_norm": 321.4391174316406,
224
+ "learning_rate": 1.0800000000000002e-05,
225
+ "loss": 0.3246,
226
+ "step": 270
227
+ },
228
+ {
229
+ "epoch": 0.2883625128733265,
230
+ "grad_norm": 19.725854873657227,
231
+ "learning_rate": 1.1200000000000001e-05,
232
+ "loss": 0.2937,
233
+ "step": 280
234
+ },
235
+ {
236
+ "epoch": 0.29866117404737386,
237
+ "grad_norm": 18.257448196411133,
238
+ "learning_rate": 1.16e-05,
239
+ "loss": 0.2814,
240
+ "step": 290
241
+ },
242
+ {
243
+ "epoch": 0.30895983522142123,
244
+ "grad_norm": 13.747376441955566,
245
+ "learning_rate": 1.2e-05,
246
+ "loss": 0.2974,
247
+ "step": 300
248
+ },
249
+ {
250
+ "epoch": 0.30895983522142123,
251
+ "eval_accuracy": 0.9093074150360453,
252
+ "eval_accuracy_label_0": 0.9181020113345927,
253
+ "eval_accuracy_label_1": 0.8972005507113354,
254
+ "eval_f1": 0.9093673855692345,
255
+ "eval_loss": 0.23899167776107788,
256
+ "eval_precision": 0.9094597674517649,
257
+ "eval_recall": 0.9093074150360453,
258
+ "eval_runtime": 28.6387,
259
+ "eval_samples_per_second": 542.482,
260
+ "eval_steps_per_second": 16.97,
261
+ "step": 300
262
+ },
263
+ {
264
+ "epoch": 0.3192584963954686,
265
+ "grad_norm": 33.30331039428711,
266
+ "learning_rate": 1.2400000000000002e-05,
267
+ "loss": 0.2292,
268
+ "step": 310
269
+ },
270
+ {
271
+ "epoch": 0.329557157569516,
272
+ "grad_norm": 11.742475509643555,
273
+ "learning_rate": 1.2800000000000001e-05,
274
+ "loss": 0.2624,
275
+ "step": 320
276
+ },
277
+ {
278
+ "epoch": 0.33985581874356335,
279
+ "grad_norm": 20.29306411743164,
280
+ "learning_rate": 1.3200000000000002e-05,
281
+ "loss": 0.2521,
282
+ "step": 330
283
+ },
284
+ {
285
+ "epoch": 0.35015447991761073,
286
+ "grad_norm": 30.528644561767578,
287
+ "learning_rate": 1.3600000000000002e-05,
288
+ "loss": 0.2194,
289
+ "step": 340
290
+ },
291
+ {
292
+ "epoch": 0.3604531410916581,
293
+ "grad_norm": 12.220970153808594,
294
+ "learning_rate": 1.4e-05,
295
+ "loss": 0.2429,
296
+ "step": 350
297
+ },
298
+ {
299
+ "epoch": 0.3707518022657055,
300
+ "grad_norm": 24.19580841064453,
301
+ "learning_rate": 1.4400000000000001e-05,
302
+ "loss": 0.2087,
303
+ "step": 360
304
+ },
305
+ {
306
+ "epoch": 0.38105046343975285,
307
+ "grad_norm": 23.321378707885742,
308
+ "learning_rate": 1.48e-05,
309
+ "loss": 0.286,
310
+ "step": 370
311
+ },
312
+ {
313
+ "epoch": 0.3913491246138002,
314
+ "grad_norm": 32.3515625,
315
+ "learning_rate": 1.5200000000000002e-05,
316
+ "loss": 0.2545,
317
+ "step": 380
318
+ },
319
+ {
320
+ "epoch": 0.4016477857878476,
321
+ "grad_norm": 23.015567779541016,
322
+ "learning_rate": 1.5600000000000003e-05,
323
+ "loss": 0.2302,
324
+ "step": 390
325
+ },
326
+ {
327
+ "epoch": 0.411946446961895,
328
+ "grad_norm": 62.823158264160156,
329
+ "learning_rate": 1.6000000000000003e-05,
330
+ "loss": 0.2644,
331
+ "step": 400
332
+ },
333
+ {
334
+ "epoch": 0.411946446961895,
335
+ "eval_accuracy": 0.8663105046343975,
336
+ "eval_accuracy_label_0": 0.789865540615624,
337
+ "eval_accuracy_label_1": 0.9715465810004589,
338
+ "eval_f1": 0.8670270957842099,
339
+ "eval_loss": 0.3067936897277832,
340
+ "eval_precision": 0.8886912845830801,
341
+ "eval_recall": 0.8663105046343975,
342
+ "eval_runtime": 28.5898,
343
+ "eval_samples_per_second": 543.41,
344
+ "eval_steps_per_second": 16.999,
345
+ "step": 400
346
+ },
347
+ {
348
+ "epoch": 0.42224510813594235,
349
+ "grad_norm": 17.351797103881836,
350
+ "learning_rate": 1.64e-05,
351
+ "loss": 0.2175,
352
+ "step": 410
353
+ },
354
+ {
355
+ "epoch": 0.4325437693099897,
356
+ "grad_norm": 17.912687301635742,
357
+ "learning_rate": 1.6800000000000002e-05,
358
+ "loss": 0.2392,
359
+ "step": 420
360
+ },
361
+ {
362
+ "epoch": 0.4428424304840371,
363
+ "grad_norm": 42.50285720825195,
364
+ "learning_rate": 1.72e-05,
365
+ "loss": 0.3647,
366
+ "step": 430
367
+ },
368
+ {
369
+ "epoch": 0.45314109165808447,
370
+ "grad_norm": 16.606185913085938,
371
+ "learning_rate": 1.76e-05,
372
+ "loss": 0.2354,
373
+ "step": 440
374
+ },
375
+ {
376
+ "epoch": 0.46343975283213185,
377
+ "grad_norm": 16.927104949951172,
378
+ "learning_rate": 1.8e-05,
379
+ "loss": 0.219,
380
+ "step": 450
381
+ },
382
+ {
383
+ "epoch": 0.4737384140061792,
384
+ "grad_norm": 21.259096145629883,
385
+ "learning_rate": 1.8400000000000003e-05,
386
+ "loss": 0.2094,
387
+ "step": 460
388
+ },
389
+ {
390
+ "epoch": 0.4840370751802266,
391
+ "grad_norm": 24.833669662475586,
392
+ "learning_rate": 1.88e-05,
393
+ "loss": 0.2152,
394
+ "step": 470
395
+ },
396
+ {
397
+ "epoch": 0.49433573635427397,
398
+ "grad_norm": 16.225502014160156,
399
+ "learning_rate": 1.9200000000000003e-05,
400
+ "loss": 0.2355,
401
+ "step": 480
402
+ },
403
+ {
404
+ "epoch": 0.5046343975283213,
405
+ "grad_norm": 22.97551918029785,
406
+ "learning_rate": 1.9600000000000002e-05,
407
+ "loss": 0.2245,
408
+ "step": 490
409
+ },
410
+ {
411
+ "epoch": 0.5149330587023687,
412
+ "grad_norm": 6.800662517547607,
413
+ "learning_rate": 2e-05,
414
+ "loss": 0.223,
415
+ "step": 500
416
+ },
417
+ {
418
+ "epoch": 0.5149330587023687,
419
+ "eval_accuracy": 0.9153578784757982,
420
+ "eval_accuracy_label_0": 0.8905433937104122,
421
+ "eval_accuracy_label_1": 0.9495181275814594,
422
+ "eval_f1": 0.9157786272541746,
423
+ "eval_loss": 0.2122022956609726,
424
+ "eval_precision": 0.9194646287255005,
425
+ "eval_recall": 0.9153578784757982,
426
+ "eval_runtime": 28.5689,
427
+ "eval_samples_per_second": 543.809,
428
+ "eval_steps_per_second": 17.012,
429
+ "step": 500
430
+ },
431
+ {
432
+ "epoch": 0.525231719876416,
433
+ "grad_norm": 8.790451049804688,
434
+ "learning_rate": 1.9917115623704932e-05,
435
+ "loss": 0.2304,
436
+ "step": 510
437
+ },
438
+ {
439
+ "epoch": 0.5355303810504635,
440
+ "grad_norm": 34.816078186035156,
441
+ "learning_rate": 1.9834231247409866e-05,
442
+ "loss": 0.1986,
443
+ "step": 520
444
+ },
445
+ {
446
+ "epoch": 0.5458290422245108,
447
+ "grad_norm": 25.571226119995117,
448
+ "learning_rate": 1.9751346871114796e-05,
449
+ "loss": 0.2303,
450
+ "step": 530
451
+ },
452
+ {
453
+ "epoch": 0.5561277033985582,
454
+ "grad_norm": 30.41813850402832,
455
+ "learning_rate": 1.966846249481973e-05,
456
+ "loss": 0.2466,
457
+ "step": 540
458
+ },
459
+ {
460
+ "epoch": 0.5664263645726055,
461
+ "grad_norm": 16.801122665405273,
462
+ "learning_rate": 1.958557811852466e-05,
463
+ "loss": 0.2301,
464
+ "step": 550
465
+ },
466
+ {
467
+ "epoch": 0.576725025746653,
468
+ "grad_norm": 12.966567993164062,
469
+ "learning_rate": 1.950269374222959e-05,
470
+ "loss": 0.1849,
471
+ "step": 560
472
+ },
473
+ {
474
+ "epoch": 0.5870236869207003,
475
+ "grad_norm": 22.240522384643555,
476
+ "learning_rate": 1.9419809365934525e-05,
477
+ "loss": 0.2195,
478
+ "step": 570
479
+ },
480
+ {
481
+ "epoch": 0.5973223480947477,
482
+ "grad_norm": 12.580880165100098,
483
+ "learning_rate": 1.9336924989639455e-05,
484
+ "loss": 0.2231,
485
+ "step": 580
486
+ },
487
+ {
488
+ "epoch": 0.607621009268795,
489
+ "grad_norm": 16.313684463500977,
490
+ "learning_rate": 1.9254040613344385e-05,
491
+ "loss": 0.1995,
492
+ "step": 590
493
+ },
494
+ {
495
+ "epoch": 0.6179196704428425,
496
+ "grad_norm": 22.65012550354004,
497
+ "learning_rate": 1.917115623704932e-05,
498
+ "loss": 0.215,
499
+ "step": 600
500
+ },
501
+ {
502
+ "epoch": 0.6179196704428425,
503
+ "eval_accuracy": 0.9228887744593203,
504
+ "eval_accuracy_label_0": 0.9714412712523613,
505
+ "eval_accuracy_label_1": 0.8560501759216766,
506
+ "eval_f1": 0.9221719088414253,
507
+ "eval_loss": 0.20105671882629395,
508
+ "eval_precision": 0.9252341477386846,
509
+ "eval_recall": 0.9228887744593203,
510
+ "eval_runtime": 28.6849,
511
+ "eval_samples_per_second": 541.608,
512
+ "eval_steps_per_second": 16.943,
513
+ "step": 600
514
+ },
515
+ {
516
+ "epoch": 0.6282183316168898,
517
+ "grad_norm": 13.182197570800781,
518
+ "learning_rate": 1.908827186075425e-05,
519
+ "loss": 0.2018,
520
+ "step": 610
521
+ },
522
+ {
523
+ "epoch": 0.6385169927909372,
524
+ "grad_norm": 17.625165939331055,
525
+ "learning_rate": 1.900538748445918e-05,
526
+ "loss": 0.2005,
527
+ "step": 620
528
+ },
529
+ {
530
+ "epoch": 0.6488156539649845,
531
+ "grad_norm": 31.007543563842773,
532
+ "learning_rate": 1.892250310816411e-05,
533
+ "loss": 0.2392,
534
+ "step": 630
535
+ },
536
+ {
537
+ "epoch": 0.659114315139032,
538
+ "grad_norm": 12.987165451049805,
539
+ "learning_rate": 1.8839618731869044e-05,
540
+ "loss": 0.2064,
541
+ "step": 640
542
+ },
543
+ {
544
+ "epoch": 0.6694129763130793,
545
+ "grad_norm": 14.435954093933105,
546
+ "learning_rate": 1.8756734355573975e-05,
547
+ "loss": 0.1576,
548
+ "step": 650
549
+ },
550
+ {
551
+ "epoch": 0.6797116374871267,
552
+ "grad_norm": 20.525474548339844,
553
+ "learning_rate": 1.867384997927891e-05,
554
+ "loss": 0.1876,
555
+ "step": 660
556
+ },
557
+ {
558
+ "epoch": 0.690010298661174,
559
+ "grad_norm": 16.95576286315918,
560
+ "learning_rate": 1.859096560298384e-05,
561
+ "loss": 0.2114,
562
+ "step": 670
563
+ },
564
+ {
565
+ "epoch": 0.7003089598352215,
566
+ "grad_norm": 36.12498092651367,
567
+ "learning_rate": 1.850808122668877e-05,
568
+ "loss": 0.2061,
569
+ "step": 680
570
+ },
571
+ {
572
+ "epoch": 0.7106076210092688,
573
+ "grad_norm": 22.316720962524414,
574
+ "learning_rate": 1.8425196850393703e-05,
575
+ "loss": 0.1984,
576
+ "step": 690
577
+ },
578
+ {
579
+ "epoch": 0.7209062821833162,
580
+ "grad_norm": 7.638524532318115,
581
+ "learning_rate": 1.8342312474098633e-05,
582
+ "loss": 0.1419,
583
+ "step": 700
584
+ },
585
+ {
586
+ "epoch": 0.7209062821833162,
587
+ "eval_accuracy": 0.9304840370751802,
588
+ "eval_accuracy_label_0": 0.9689965551727969,
589
+ "eval_accuracy_label_1": 0.877466727856815,
590
+ "eval_f1": 0.9300182365736557,
591
+ "eval_loss": 0.18355503678321838,
592
+ "eval_precision": 0.931752271905432,
593
+ "eval_recall": 0.9304840370751802,
594
+ "eval_runtime": 28.6805,
595
+ "eval_samples_per_second": 541.692,
596
+ "eval_steps_per_second": 16.945,
597
+ "step": 700
598
+ },
599
+ {
600
+ "epoch": 0.7312049433573635,
601
+ "grad_norm": 13.644458770751953,
602
+ "learning_rate": 1.8259428097803567e-05,
603
+ "loss": 0.1721,
604
+ "step": 710
605
+ },
606
+ {
607
+ "epoch": 0.741503604531411,
608
+ "grad_norm": 17.838420867919922,
609
+ "learning_rate": 1.8176543721508498e-05,
610
+ "loss": 0.1458,
611
+ "step": 720
612
+ },
613
+ {
614
+ "epoch": 0.7518022657054583,
615
+ "grad_norm": 27.161771774291992,
616
+ "learning_rate": 1.8093659345213428e-05,
617
+ "loss": 0.1231,
618
+ "step": 730
619
+ },
620
+ {
621
+ "epoch": 0.7621009268795057,
622
+ "grad_norm": 22.936689376831055,
623
+ "learning_rate": 1.8010774968918362e-05,
624
+ "loss": 0.2046,
625
+ "step": 740
626
+ },
627
+ {
628
+ "epoch": 0.772399588053553,
629
+ "grad_norm": 20.51582908630371,
630
+ "learning_rate": 1.7927890592623292e-05,
631
+ "loss": 0.1781,
632
+ "step": 750
633
+ },
634
+ {
635
+ "epoch": 0.7826982492276005,
636
+ "grad_norm": 20.982328414916992,
637
+ "learning_rate": 1.7845006216328226e-05,
638
+ "loss": 0.1914,
639
+ "step": 760
640
+ },
641
+ {
642
+ "epoch": 0.7929969104016478,
643
+ "grad_norm": 16.1798038482666,
644
+ "learning_rate": 1.7762121840033156e-05,
645
+ "loss": 0.2076,
646
+ "step": 770
647
+ },
648
+ {
649
+ "epoch": 0.8032955715756952,
650
+ "grad_norm": 26.379657745361328,
651
+ "learning_rate": 1.7679237463738087e-05,
652
+ "loss": 0.1707,
653
+ "step": 780
654
+ },
655
+ {
656
+ "epoch": 0.8135942327497425,
657
+ "grad_norm": 7.800419807434082,
658
+ "learning_rate": 1.7596353087443017e-05,
659
+ "loss": 0.142,
660
+ "step": 790
661
+ },
662
+ {
663
+ "epoch": 0.82389289392379,
664
+ "grad_norm": 10.589848518371582,
665
+ "learning_rate": 1.751346871114795e-05,
666
+ "loss": 0.1511,
667
+ "step": 800
668
+ },
669
+ {
670
+ "epoch": 0.82389289392379,
671
+ "eval_accuracy": 0.930548403707518,
672
+ "eval_accuracy_label_0": 0.9145460606734082,
673
+ "eval_accuracy_label_1": 0.9525776350007649,
674
+ "eval_f1": 0.9308174189927962,
675
+ "eval_loss": 0.18278397619724274,
676
+ "eval_precision": 0.9327234594811592,
677
+ "eval_recall": 0.930548403707518,
678
+ "eval_runtime": 28.6416,
679
+ "eval_samples_per_second": 542.428,
680
+ "eval_steps_per_second": 16.968,
681
+ "step": 800
682
+ },
683
+ {
684
+ "epoch": 0.8341915550978373,
685
+ "grad_norm": 12.684349060058594,
686
+ "learning_rate": 1.743058433485288e-05,
687
+ "loss": 0.2034,
688
+ "step": 810
689
+ },
690
+ {
691
+ "epoch": 0.8444902162718847,
692
+ "grad_norm": 13.458330154418945,
693
+ "learning_rate": 1.7347699958557812e-05,
694
+ "loss": 0.1508,
695
+ "step": 820
696
+ },
697
+ {
698
+ "epoch": 0.854788877445932,
699
+ "grad_norm": 52.44272232055664,
700
+ "learning_rate": 1.7264815582262742e-05,
701
+ "loss": 0.2015,
702
+ "step": 830
703
+ },
704
+ {
705
+ "epoch": 0.8650875386199794,
706
+ "grad_norm": 12.620824813842773,
707
+ "learning_rate": 1.7181931205967676e-05,
708
+ "loss": 0.2104,
709
+ "step": 840
710
+ },
711
+ {
712
+ "epoch": 0.8753861997940268,
713
+ "grad_norm": 22.93926429748535,
714
+ "learning_rate": 1.7099046829672606e-05,
715
+ "loss": 0.1698,
716
+ "step": 850
717
+ },
718
+ {
719
+ "epoch": 0.8856848609680742,
720
+ "grad_norm": 43.46416091918945,
721
+ "learning_rate": 1.701616245337754e-05,
722
+ "loss": 0.2122,
723
+ "step": 860
724
+ },
725
+ {
726
+ "epoch": 0.8959835221421215,
727
+ "grad_norm": 13.863987922668457,
728
+ "learning_rate": 1.693327807708247e-05,
729
+ "loss": 0.1794,
730
+ "step": 870
731
+ },
732
+ {
733
+ "epoch": 0.9062821833161689,
734
+ "grad_norm": 13.215469360351562,
735
+ "learning_rate": 1.68503937007874e-05,
736
+ "loss": 0.1822,
737
+ "step": 880
738
+ },
739
+ {
740
+ "epoch": 0.9165808444902163,
741
+ "grad_norm": 10.52542495727539,
742
+ "learning_rate": 1.6767509324492335e-05,
743
+ "loss": 0.1605,
744
+ "step": 890
745
+ },
746
+ {
747
+ "epoch": 0.9268795056642637,
748
+ "grad_norm": 15.559625625610352,
749
+ "learning_rate": 1.6684624948197265e-05,
750
+ "loss": 0.173,
751
+ "step": 900
752
+ },
753
+ {
754
+ "epoch": 0.9268795056642637,
755
+ "eval_accuracy": 0.9430355303810505,
756
+ "eval_accuracy_label_0": 0.9665518390932326,
757
+ "eval_accuracy_label_1": 0.9106623833562797,
758
+ "eval_f1": 0.942846283646341,
759
+ "eval_loss": 0.15442048013210297,
760
+ "eval_precision": 0.9433049100473271,
761
+ "eval_recall": 0.9430355303810505,
762
+ "eval_runtime": 28.6287,
763
+ "eval_samples_per_second": 542.672,
764
+ "eval_steps_per_second": 16.976,
765
+ "step": 900
766
+ },
767
+ {
768
+ "epoch": 0.937178166838311,
769
+ "grad_norm": 16.371034622192383,
770
+ "learning_rate": 1.66017405719022e-05,
771
+ "loss": 0.1453,
772
+ "step": 910
773
+ },
774
+ {
775
+ "epoch": 0.9474768280123584,
776
+ "grad_norm": 11.040371894836426,
777
+ "learning_rate": 1.651885619560713e-05,
778
+ "loss": 0.1388,
779
+ "step": 920
780
+ },
781
+ {
782
+ "epoch": 0.9577754891864058,
783
+ "grad_norm": 24.066585540771484,
784
+ "learning_rate": 1.6435971819312063e-05,
785
+ "loss": 0.1822,
786
+ "step": 930
787
+ },
788
+ {
789
+ "epoch": 0.9680741503604532,
790
+ "grad_norm": 12.861708641052246,
791
+ "learning_rate": 1.6353087443016994e-05,
792
+ "loss": 0.1382,
793
+ "step": 940
794
+ },
795
+ {
796
+ "epoch": 0.9783728115345005,
797
+ "grad_norm": 11.843149185180664,
798
+ "learning_rate": 1.6270203066721924e-05,
799
+ "loss": 0.1766,
800
+ "step": 950
801
+ },
802
+ {
803
+ "epoch": 0.9886714727085479,
804
+ "grad_norm": 37.507041931152344,
805
+ "learning_rate": 1.6187318690426858e-05,
806
+ "loss": 0.1511,
807
+ "step": 960
808
+ },
809
+ {
810
+ "epoch": 0.9989701338825953,
811
+ "grad_norm": 15.694278717041016,
812
+ "learning_rate": 1.6104434314131788e-05,
813
+ "loss": 0.1444,
814
+ "step": 970
815
+ },
816
+ {
817
+ "epoch": 1.0092687950566426,
818
+ "grad_norm": 13.906076431274414,
819
+ "learning_rate": 1.602154993783672e-05,
820
+ "loss": 0.1528,
821
+ "step": 980
822
+ },
823
+ {
824
+ "epoch": 1.01956745623069,
825
+ "grad_norm": 7.0642571449279785,
826
+ "learning_rate": 1.5938665561541652e-05,
827
+ "loss": 0.1619,
828
+ "step": 990
829
+ },
830
+ {
831
+ "epoch": 1.0298661174047374,
832
+ "grad_norm": 9.03572940826416,
833
+ "learning_rate": 1.5855781185246583e-05,
834
+ "loss": 0.0986,
835
+ "step": 1000
836
+ },
837
+ {
838
+ "epoch": 1.0298661174047374,
839
+ "eval_accuracy": 0.9429067971163748,
840
+ "eval_accuracy_label_0": 0.9384376041782421,
841
+ "eval_accuracy_label_1": 0.9490592014685636,
842
+ "eval_f1": 0.9430264358268661,
843
+ "eval_loss": 0.1512954831123352,
844
+ "eval_precision": 0.9435332838620341,
845
+ "eval_recall": 0.9429067971163748,
846
+ "eval_runtime": 28.6625,
847
+ "eval_samples_per_second": 542.033,
848
+ "eval_steps_per_second": 16.956,
849
+ "step": 1000
850
+ },
851
+ {
852
+ "epoch": 1.0401647785787849,
853
+ "grad_norm": 14.95033073425293,
854
+ "learning_rate": 1.5772896808951513e-05,
855
+ "loss": 0.127,
856
+ "step": 1010
857
+ },
858
+ {
859
+ "epoch": 1.050463439752832,
860
+ "grad_norm": 11.197813034057617,
861
+ "learning_rate": 1.5690012432656444e-05,
862
+ "loss": 0.1089,
863
+ "step": 1020
864
+ },
865
+ {
866
+ "epoch": 1.0607621009268795,
867
+ "grad_norm": 29.581073760986328,
868
+ "learning_rate": 1.5607128056361377e-05,
869
+ "loss": 0.1313,
870
+ "step": 1030
871
+ },
872
+ {
873
+ "epoch": 1.071060762100927,
874
+ "grad_norm": 9.089577674865723,
875
+ "learning_rate": 1.5524243680066308e-05,
876
+ "loss": 0.1005,
877
+ "step": 1040
878
+ },
879
+ {
880
+ "epoch": 1.0813594232749741,
881
+ "grad_norm": 11.24911117553711,
882
+ "learning_rate": 1.5441359303771238e-05,
883
+ "loss": 0.1182,
884
+ "step": 1050
885
+ },
886
+ {
887
+ "epoch": 1.0916580844490216,
888
+ "grad_norm": 12.69548511505127,
889
+ "learning_rate": 1.5358474927476172e-05,
890
+ "loss": 0.1086,
891
+ "step": 1060
892
+ },
893
+ {
894
+ "epoch": 1.101956745623069,
895
+ "grad_norm": 6.551661491394043,
896
+ "learning_rate": 1.5275590551181102e-05,
897
+ "loss": 0.1795,
898
+ "step": 1070
899
+ },
900
+ {
901
+ "epoch": 1.1122554067971164,
902
+ "grad_norm": 7.627679347991943,
903
+ "learning_rate": 1.5192706174886036e-05,
904
+ "loss": 0.1228,
905
+ "step": 1080
906
+ },
907
+ {
908
+ "epoch": 1.1225540679711639,
909
+ "grad_norm": 9.827099800109863,
910
+ "learning_rate": 1.5109821798590967e-05,
911
+ "loss": 0.1744,
912
+ "step": 1090
913
+ },
914
+ {
915
+ "epoch": 1.132852729145211,
916
+ "grad_norm": 16.760608673095703,
917
+ "learning_rate": 1.5026937422295897e-05,
918
+ "loss": 0.1403,
919
+ "step": 1100
920
+ },
921
+ {
922
+ "epoch": 1.132852729145211,
923
+ "eval_accuracy": 0.9426493305870237,
924
+ "eval_accuracy_label_0": 0.9277697521946883,
925
+ "eval_accuracy_label_1": 0.9631329355973688,
926
+ "eval_f1": 0.9428523899715144,
927
+ "eval_loss": 0.15147006511688232,
928
+ "eval_precision": 0.9443742901764207,
929
+ "eval_recall": 0.9426493305870237,
930
+ "eval_runtime": 28.672,
931
+ "eval_samples_per_second": 541.852,
932
+ "eval_steps_per_second": 16.95,
933
+ "step": 1100
934
+ },
935
+ {
936
+ "epoch": 1.1431513903192585,
937
+ "grad_norm": 13.244966506958008,
938
+ "learning_rate": 1.4944053046000831e-05,
939
+ "loss": 0.1337,
940
+ "step": 1110
941
+ },
942
+ {
943
+ "epoch": 1.153450051493306,
944
+ "grad_norm": 16.159469604492188,
945
+ "learning_rate": 1.4861168669705761e-05,
946
+ "loss": 0.1257,
947
+ "step": 1120
948
+ },
949
+ {
950
+ "epoch": 1.1637487126673531,
951
+ "grad_norm": 8.31472396850586,
952
+ "learning_rate": 1.4778284293410693e-05,
953
+ "loss": 0.1138,
954
+ "step": 1130
955
+ },
956
+ {
957
+ "epoch": 1.1740473738414006,
958
+ "grad_norm": 20.465499877929688,
959
+ "learning_rate": 1.4695399917115625e-05,
960
+ "loss": 0.1145,
961
+ "step": 1140
962
+ },
963
+ {
964
+ "epoch": 1.184346035015448,
965
+ "grad_norm": 14.761605262756348,
966
+ "learning_rate": 1.4612515540820556e-05,
967
+ "loss": 0.1319,
968
+ "step": 1150
969
+ },
970
+ {
971
+ "epoch": 1.1946446961894954,
972
+ "grad_norm": 14.083001136779785,
973
+ "learning_rate": 1.4529631164525488e-05,
974
+ "loss": 0.1596,
975
+ "step": 1160
976
+ },
977
+ {
978
+ "epoch": 1.2049433573635429,
979
+ "grad_norm": 15.79395866394043,
980
+ "learning_rate": 1.4446746788230418e-05,
981
+ "loss": 0.1195,
982
+ "step": 1170
983
+ },
984
+ {
985
+ "epoch": 1.21524201853759,
986
+ "grad_norm": 19.134933471679688,
987
+ "learning_rate": 1.4363862411935352e-05,
988
+ "loss": 0.1326,
989
+ "step": 1180
990
+ },
991
+ {
992
+ "epoch": 1.2255406797116375,
993
+ "grad_norm": 8.911842346191406,
994
+ "learning_rate": 1.4280978035640283e-05,
995
+ "loss": 0.1658,
996
+ "step": 1190
997
+ },
998
+ {
999
+ "epoch": 1.235839340885685,
1000
+ "grad_norm": 13.809399604797363,
1001
+ "learning_rate": 1.4198093659345216e-05,
1002
+ "loss": 0.1133,
1003
+ "step": 1200
1004
+ },
1005
+ {
1006
+ "epoch": 1.235839340885685,
1007
+ "eval_accuracy": 0.9474768280123584,
1008
+ "eval_accuracy_label_0": 0.9531059006556284,
1009
+ "eval_accuracy_label_1": 0.9397277038396818,
1010
+ "eval_f1": 0.9474920315228875,
1011
+ "eval_loss": 0.1394452601671219,
1012
+ "eval_precision": 0.9475135239059512,
1013
+ "eval_recall": 0.9474768280123584,
1014
+ "eval_runtime": 28.6446,
1015
+ "eval_samples_per_second": 542.371,
1016
+ "eval_steps_per_second": 16.967,
1017
+ "step": 1200
1018
+ },
1019
+ {
1020
+ "epoch": 1.2461380020597321,
1021
+ "grad_norm": 6.037145137786865,
1022
+ "learning_rate": 1.4115209283050147e-05,
1023
+ "loss": 0.1181,
1024
+ "step": 1210
1025
+ },
1026
+ {
1027
+ "epoch": 1.2564366632337796,
1028
+ "grad_norm": 12.423005104064941,
1029
+ "learning_rate": 1.4032324906755077e-05,
1030
+ "loss": 0.1262,
1031
+ "step": 1220
1032
+ },
1033
+ {
1034
+ "epoch": 1.266735324407827,
1035
+ "grad_norm": 4.064807415008545,
1036
+ "learning_rate": 1.394944053046001e-05,
1037
+ "loss": 0.127,
1038
+ "step": 1230
1039
+ },
1040
+ {
1041
+ "epoch": 1.2770339855818744,
1042
+ "grad_norm": 12.577651023864746,
1043
+ "learning_rate": 1.3866556154164941e-05,
1044
+ "loss": 0.0983,
1045
+ "step": 1240
1046
+ },
1047
+ {
1048
+ "epoch": 1.2873326467559219,
1049
+ "grad_norm": 29.784053802490234,
1050
+ "learning_rate": 1.3783671777869873e-05,
1051
+ "loss": 0.1294,
1052
+ "step": 1250
1053
+ },
1054
+ {
1055
+ "epoch": 1.297631307929969,
1056
+ "grad_norm": 10.433960914611816,
1057
+ "learning_rate": 1.3700787401574804e-05,
1058
+ "loss": 0.1268,
1059
+ "step": 1260
1060
+ },
1061
+ {
1062
+ "epoch": 1.3079299691040165,
1063
+ "grad_norm": 23.706260681152344,
1064
+ "learning_rate": 1.3617903025279734e-05,
1065
+ "loss": 0.1508,
1066
+ "step": 1270
1067
+ },
1068
+ {
1069
+ "epoch": 1.318228630278064,
1070
+ "grad_norm": 8.82191276550293,
1071
+ "learning_rate": 1.3535018648984668e-05,
1072
+ "loss": 0.1419,
1073
+ "step": 1280
1074
+ },
1075
+ {
1076
+ "epoch": 1.3285272914521111,
1077
+ "grad_norm": 15.989568710327148,
1078
+ "learning_rate": 1.3452134272689598e-05,
1079
+ "loss": 0.1148,
1080
+ "step": 1290
1081
+ },
1082
+ {
1083
+ "epoch": 1.3388259526261586,
1084
+ "grad_norm": 18.397598266601562,
1085
+ "learning_rate": 1.3369249896394532e-05,
1086
+ "loss": 0.1117,
1087
+ "step": 1300
1088
+ },
1089
+ {
1090
+ "epoch": 1.3388259526261586,
1091
+ "eval_accuracy": 0.9457389289392379,
1092
+ "eval_accuracy_label_0": 0.9371041226802979,
1093
+ "eval_accuracy_label_1": 0.9576258222426189,
1094
+ "eval_f1": 0.9458829241092044,
1095
+ "eval_loss": 0.15250205993652344,
1096
+ "eval_precision": 0.9466897814987169,
1097
+ "eval_recall": 0.9457389289392379,
1098
+ "eval_runtime": 28.6931,
1099
+ "eval_samples_per_second": 541.455,
1100
+ "eval_steps_per_second": 16.938,
1101
+ "step": 1300
1102
+ },
1103
+ {
1104
+ "epoch": 1.349124613800206,
1105
+ "grad_norm": 8.94162368774414,
1106
+ "learning_rate": 1.3286365520099463e-05,
1107
+ "loss": 0.1298,
1108
+ "step": 1310
1109
+ },
1110
+ {
1111
+ "epoch": 1.3594232749742534,
1112
+ "grad_norm": 8.949539184570312,
1113
+ "learning_rate": 1.3203481143804393e-05,
1114
+ "loss": 0.1136,
1115
+ "step": 1320
1116
+ },
1117
+ {
1118
+ "epoch": 1.3697219361483008,
1119
+ "grad_norm": 9.650628089904785,
1120
+ "learning_rate": 1.3120596767509325e-05,
1121
+ "loss": 0.1107,
1122
+ "step": 1330
1123
+ },
1124
+ {
1125
+ "epoch": 1.380020597322348,
1126
+ "grad_norm": 20.57952308654785,
1127
+ "learning_rate": 1.3037712391214257e-05,
1128
+ "loss": 0.1305,
1129
+ "step": 1340
1130
+ },
1131
+ {
1132
+ "epoch": 1.3903192584963955,
1133
+ "grad_norm": 6.576913833618164,
1134
+ "learning_rate": 1.295482801491919e-05,
1135
+ "loss": 0.1008,
1136
+ "step": 1350
1137
+ },
1138
+ {
1139
+ "epoch": 1.400617919670443,
1140
+ "grad_norm": 8.591489791870117,
1141
+ "learning_rate": 1.287194363862412e-05,
1142
+ "loss": 0.1142,
1143
+ "step": 1360
1144
+ },
1145
+ {
1146
+ "epoch": 1.4109165808444901,
1147
+ "grad_norm": 21.97450065612793,
1148
+ "learning_rate": 1.2789059262329052e-05,
1149
+ "loss": 0.1098,
1150
+ "step": 1370
1151
+ },
1152
+ {
1153
+ "epoch": 1.4212152420185376,
1154
+ "grad_norm": 13.194725036621094,
1155
+ "learning_rate": 1.2706174886033984e-05,
1156
+ "loss": 0.115,
1157
+ "step": 1380
1158
+ },
1159
+ {
1160
+ "epoch": 1.431513903192585,
1161
+ "grad_norm": 17.651912689208984,
1162
+ "learning_rate": 1.2623290509738914e-05,
1163
+ "loss": 0.1392,
1164
+ "step": 1390
1165
+ },
1166
+ {
1167
+ "epoch": 1.4418125643666324,
1168
+ "grad_norm": 10.665314674377441,
1169
+ "learning_rate": 1.2540406133443848e-05,
1170
+ "loss": 0.1277,
1171
+ "step": 1400
1172
+ },
1173
+ {
1174
+ "epoch": 1.4418125643666324,
1175
+ "eval_accuracy": 0.9490216271884655,
1176
+ "eval_accuracy_label_0": 0.950105567285254,
1177
+ "eval_accuracy_label_1": 0.9475294477589108,
1178
+ "eval_f1": 0.9490756146391877,
1179
+ "eval_loss": 0.13106246292591095,
1180
+ "eval_precision": 0.9492196286028385,
1181
+ "eval_recall": 0.9490216271884655,
1182
+ "eval_runtime": 28.6067,
1183
+ "eval_samples_per_second": 543.09,
1184
+ "eval_steps_per_second": 16.989,
1185
+ "step": 1400
1186
+ },
1187
+ {
1188
+ "epoch": 1.4521112255406798,
1189
+ "grad_norm": 26.829360961914062,
1190
+ "learning_rate": 1.2457521757148779e-05,
1191
+ "loss": 0.1164,
1192
+ "step": 1410
1193
+ },
1194
+ {
1195
+ "epoch": 1.462409886714727,
1196
+ "grad_norm": 12.50798225402832,
1197
+ "learning_rate": 1.2374637380853709e-05,
1198
+ "loss": 0.1368,
1199
+ "step": 1420
1200
+ },
1201
+ {
1202
+ "epoch": 1.4727085478887745,
1203
+ "grad_norm": 10.048441886901855,
1204
+ "learning_rate": 1.2291753004558643e-05,
1205
+ "loss": 0.0953,
1206
+ "step": 1430
1207
+ },
1208
+ {
1209
+ "epoch": 1.483007209062822,
1210
+ "grad_norm": 9.52072811126709,
1211
+ "learning_rate": 1.2208868628263573e-05,
1212
+ "loss": 0.1373,
1213
+ "step": 1440
1214
+ },
1215
+ {
1216
+ "epoch": 1.4933058702368691,
1217
+ "grad_norm": 10.079704284667969,
1218
+ "learning_rate": 1.2125984251968505e-05,
1219
+ "loss": 0.0797,
1220
+ "step": 1450
1221
+ },
1222
+ {
1223
+ "epoch": 1.5036045314109165,
1224
+ "grad_norm": 16.81131935119629,
1225
+ "learning_rate": 1.2043099875673436e-05,
1226
+ "loss": 0.1407,
1227
+ "step": 1460
1228
+ },
1229
+ {
1230
+ "epoch": 1.513903192584964,
1231
+ "grad_norm": 9.030206680297852,
1232
+ "learning_rate": 1.196021549937837e-05,
1233
+ "loss": 0.1378,
1234
+ "step": 1470
1235
+ },
1236
+ {
1237
+ "epoch": 1.5242018537590112,
1238
+ "grad_norm": 25.010522842407227,
1239
+ "learning_rate": 1.18773311230833e-05,
1240
+ "loss": 0.1205,
1241
+ "step": 1480
1242
+ },
1243
+ {
1244
+ "epoch": 1.5345005149330588,
1245
+ "grad_norm": 23.806989669799805,
1246
+ "learning_rate": 1.179444674678823e-05,
1247
+ "loss": 0.1473,
1248
+ "step": 1490
1249
+ },
1250
+ {
1251
+ "epoch": 1.544799176107106,
1252
+ "grad_norm": 8.146597862243652,
1253
+ "learning_rate": 1.1711562370493164e-05,
1254
+ "loss": 0.0886,
1255
+ "step": 1500
1256
+ },
1257
+ {
1258
+ "epoch": 1.544799176107106,
1259
+ "eval_accuracy": 0.9503089598352215,
1260
+ "eval_accuracy_label_0": 0.962773641515724,
1261
+ "eval_accuracy_label_1": 0.933149762888175,
1262
+ "eval_f1": 0.9502536107094707,
1263
+ "eval_loss": 0.1374950259923935,
1264
+ "eval_precision": 0.9502824202007619,
1265
+ "eval_recall": 0.9503089598352215,
1266
+ "eval_runtime": 28.5942,
1267
+ "eval_samples_per_second": 543.328,
1268
+ "eval_steps_per_second": 16.996,
1269
+ "step": 1500
1270
+ },
1271
+ {
1272
+ "epoch": 1.5550978372811535,
1273
+ "grad_norm": 11.416892051696777,
1274
+ "learning_rate": 1.1628677994198094e-05,
1275
+ "loss": 0.1135,
1276
+ "step": 1510
1277
+ },
1278
+ {
1279
+ "epoch": 1.565396498455201,
1280
+ "grad_norm": 19.61497688293457,
1281
+ "learning_rate": 1.1545793617903027e-05,
1282
+ "loss": 0.1169,
1283
+ "step": 1520
1284
+ },
1285
+ {
1286
+ "epoch": 1.575695159629248,
1287
+ "grad_norm": 11.90202808380127,
1288
+ "learning_rate": 1.1462909241607959e-05,
1289
+ "loss": 0.1339,
1290
+ "step": 1530
1291
+ },
1292
+ {
1293
+ "epoch": 1.5859938208032955,
1294
+ "grad_norm": 6.188625812530518,
1295
+ "learning_rate": 1.1380024865312889e-05,
1296
+ "loss": 0.07,
1297
+ "step": 1540
1298
+ },
1299
+ {
1300
+ "epoch": 1.596292481977343,
1301
+ "grad_norm": 14.50114631652832,
1302
+ "learning_rate": 1.1297140489017821e-05,
1303
+ "loss": 0.1047,
1304
+ "step": 1550
1305
+ },
1306
+ {
1307
+ "epoch": 1.6065911431513902,
1308
+ "grad_norm": 18.257389068603516,
1309
+ "learning_rate": 1.1214256112722752e-05,
1310
+ "loss": 0.1098,
1311
+ "step": 1560
1312
+ },
1313
+ {
1314
+ "epoch": 1.6168898043254378,
1315
+ "grad_norm": 12.986026763916016,
1316
+ "learning_rate": 1.1131371736427685e-05,
1317
+ "loss": 0.1248,
1318
+ "step": 1570
1319
+ },
1320
+ {
1321
+ "epoch": 1.627188465499485,
1322
+ "grad_norm": 13.668187141418457,
1323
+ "learning_rate": 1.1048487360132616e-05,
1324
+ "loss": 0.0758,
1325
+ "step": 1580
1326
+ },
1327
+ {
1328
+ "epoch": 1.6374871266735325,
1329
+ "grad_norm": 24.57569694519043,
1330
+ "learning_rate": 1.0965602983837546e-05,
1331
+ "loss": 0.1076,
1332
+ "step": 1590
1333
+ },
1334
+ {
1335
+ "epoch": 1.64778578784758,
1336
+ "grad_norm": 8.269564628601074,
1337
+ "learning_rate": 1.088271860754248e-05,
1338
+ "loss": 0.1273,
1339
+ "step": 1600
1340
+ },
1341
+ {
1342
+ "epoch": 1.64778578784758,
1343
+ "eval_accuracy": 0.95326982492276,
1344
+ "eval_accuracy_label_0": 0.9535503944882765,
1345
+ "eval_accuracy_label_1": 0.9528835857426954,
1346
+ "eval_f1": 0.9533210896239291,
1347
+ "eval_loss": 0.12969127297401428,
1348
+ "eval_precision": 0.9534697447214137,
1349
+ "eval_recall": 0.95326982492276,
1350
+ "eval_runtime": 28.6188,
1351
+ "eval_samples_per_second": 542.861,
1352
+ "eval_steps_per_second": 16.982,
1353
+ "step": 1600
1354
+ },
1355
+ {
1356
+ "epoch": 1.658084449021627,
1357
+ "grad_norm": 13.074461936950684,
1358
+ "learning_rate": 1.079983423124741e-05,
1359
+ "loss": 0.134,
1360
+ "step": 1610
1361
+ },
1362
+ {
1363
+ "epoch": 1.6683831101956745,
1364
+ "grad_norm": 17.92150115966797,
1365
+ "learning_rate": 1.0716949854952342e-05,
1366
+ "loss": 0.138,
1367
+ "step": 1620
1368
+ },
1369
+ {
1370
+ "epoch": 1.678681771369722,
1371
+ "grad_norm": 6.528224468231201,
1372
+ "learning_rate": 1.0634065478657275e-05,
1373
+ "loss": 0.1281,
1374
+ "step": 1630
1375
+ },
1376
+ {
1377
+ "epoch": 1.6889804325437692,
1378
+ "grad_norm": 15.4542236328125,
1379
+ "learning_rate": 1.0551181102362205e-05,
1380
+ "loss": 0.1272,
1381
+ "step": 1640
1382
+ },
1383
+ {
1384
+ "epoch": 1.6992790937178168,
1385
+ "grad_norm": 7.588622570037842,
1386
+ "learning_rate": 1.0468296726067137e-05,
1387
+ "loss": 0.0765,
1388
+ "step": 1650
1389
+ },
1390
+ {
1391
+ "epoch": 1.709577754891864,
1392
+ "grad_norm": 14.380094528198242,
1393
+ "learning_rate": 1.0385412349772067e-05,
1394
+ "loss": 0.1326,
1395
+ "step": 1660
1396
+ },
1397
+ {
1398
+ "epoch": 1.7198764160659115,
1399
+ "grad_norm": 17.22504997253418,
1400
+ "learning_rate": 1.0302527973477001e-05,
1401
+ "loss": 0.1725,
1402
+ "step": 1670
1403
+ },
1404
+ {
1405
+ "epoch": 1.730175077239959,
1406
+ "grad_norm": 21.660451889038086,
1407
+ "learning_rate": 1.0219643597181932e-05,
1408
+ "loss": 0.1201,
1409
+ "step": 1680
1410
+ },
1411
+ {
1412
+ "epoch": 1.740473738414006,
1413
+ "grad_norm": 12.858647346496582,
1414
+ "learning_rate": 1.0136759220886862e-05,
1415
+ "loss": 0.1303,
1416
+ "step": 1690
1417
+ },
1418
+ {
1419
+ "epoch": 1.7507723995880535,
1420
+ "grad_norm": 7.619086742401123,
1421
+ "learning_rate": 1.0053874844591796e-05,
1422
+ "loss": 0.1102,
1423
+ "step": 1700
1424
+ },
1425
+ {
1426
+ "epoch": 1.7507723995880535,
1427
+ "eval_accuracy": 0.9578398558187435,
1428
+ "eval_accuracy_label_0": 0.9636626291810201,
1429
+ "eval_accuracy_label_1": 0.9498240783233899,
1430
+ "eval_f1": 0.9578394145096656,
1431
+ "eval_loss": 0.11356295645236969,
1432
+ "eval_precision": 0.9578389813236798,
1433
+ "eval_recall": 0.9578398558187435,
1434
+ "eval_runtime": 28.6352,
1435
+ "eval_samples_per_second": 542.548,
1436
+ "eval_steps_per_second": 16.972,
1437
+ "step": 1700
1438
+ },
1439
+ {
1440
+ "epoch": 1.761071060762101,
1441
+ "grad_norm": 11.526819229125977,
1442
+ "learning_rate": 9.970990468296728e-06,
1443
+ "loss": 0.0705,
1444
+ "step": 1710
1445
+ },
1446
+ {
1447
+ "epoch": 1.7713697219361482,
1448
+ "grad_norm": 11.57654857635498,
1449
+ "learning_rate": 9.888106092001658e-06,
1450
+ "loss": 0.1298,
1451
+ "step": 1720
1452
+ },
1453
+ {
1454
+ "epoch": 1.7816683831101958,
1455
+ "grad_norm": 11.508631706237793,
1456
+ "learning_rate": 9.80522171570659e-06,
1457
+ "loss": 0.0818,
1458
+ "step": 1730
1459
+ },
1460
+ {
1461
+ "epoch": 1.791967044284243,
1462
+ "grad_norm": 15.72537612915039,
1463
+ "learning_rate": 9.722337339411521e-06,
1464
+ "loss": 0.1334,
1465
+ "step": 1740
1466
+ },
1467
+ {
1468
+ "epoch": 1.8022657054582905,
1469
+ "grad_norm": 19.711965560913086,
1470
+ "learning_rate": 9.639452963116453e-06,
1471
+ "loss": 0.0747,
1472
+ "step": 1750
1473
+ },
1474
+ {
1475
+ "epoch": 1.8125643666323379,
1476
+ "grad_norm": 14.697903633117676,
1477
+ "learning_rate": 9.556568586821385e-06,
1478
+ "loss": 0.0819,
1479
+ "step": 1760
1480
+ },
1481
+ {
1482
+ "epoch": 1.822863027806385,
1483
+ "grad_norm": 9.13084888458252,
1484
+ "learning_rate": 9.473684210526315e-06,
1485
+ "loss": 0.076,
1486
+ "step": 1770
1487
+ },
1488
+ {
1489
+ "epoch": 1.8331616889804325,
1490
+ "grad_norm": 6.7411909103393555,
1491
+ "learning_rate": 9.390799834231248e-06,
1492
+ "loss": 0.117,
1493
+ "step": 1780
1494
+ },
1495
+ {
1496
+ "epoch": 1.84346035015448,
1497
+ "grad_norm": 9.10245132446289,
1498
+ "learning_rate": 9.30791545793618e-06,
1499
+ "loss": 0.099,
1500
+ "step": 1790
1501
+ },
1502
+ {
1503
+ "epoch": 1.8537590113285272,
1504
+ "grad_norm": 12.770278930664062,
1505
+ "learning_rate": 9.225031081641112e-06,
1506
+ "loss": 0.0793,
1507
+ "step": 1800
1508
+ },
1509
+ {
1510
+ "epoch": 1.8537590113285272,
1511
+ "eval_accuracy": 0.9562306900102987,
1512
+ "eval_accuracy_label_0": 0.9717746416268475,
1513
+ "eval_accuracy_label_1": 0.934832491968793,
1514
+ "eval_f1": 0.9561461033354728,
1515
+ "eval_loss": 0.12691599130630493,
1516
+ "eval_precision": 0.9563031504820825,
1517
+ "eval_recall": 0.9562306900102987,
1518
+ "eval_runtime": 28.648,
1519
+ "eval_samples_per_second": 542.306,
1520
+ "eval_steps_per_second": 16.965,
1521
+ "step": 1800
1522
+ },
1523
+ {
1524
+ "epoch": 1.8640576725025748,
1525
+ "grad_norm": 10.909438133239746,
1526
+ "learning_rate": 9.142146705346044e-06,
1527
+ "loss": 0.094,
1528
+ "step": 1810
1529
+ },
1530
+ {
1531
+ "epoch": 1.874356333676622,
1532
+ "grad_norm": 24.187469482421875,
1533
+ "learning_rate": 9.059262329050974e-06,
1534
+ "loss": 0.1057,
1535
+ "step": 1820
1536
+ },
1537
+ {
1538
+ "epoch": 1.8846549948506695,
1539
+ "grad_norm": 12.352056503295898,
1540
+ "learning_rate": 8.976377952755906e-06,
1541
+ "loss": 0.0996,
1542
+ "step": 1830
1543
+ },
1544
+ {
1545
+ "epoch": 1.8949536560247169,
1546
+ "grad_norm": 18.231224060058594,
1547
+ "learning_rate": 8.893493576460838e-06,
1548
+ "loss": 0.1419,
1549
+ "step": 1840
1550
+ },
1551
+ {
1552
+ "epoch": 1.905252317198764,
1553
+ "grad_norm": 13.484111785888672,
1554
+ "learning_rate": 8.810609200165769e-06,
1555
+ "loss": 0.0816,
1556
+ "step": 1850
1557
+ },
1558
+ {
1559
+ "epoch": 1.9155509783728115,
1560
+ "grad_norm": 7.332424640655518,
1561
+ "learning_rate": 8.727724823870701e-06,
1562
+ "loss": 0.1034,
1563
+ "step": 1860
1564
+ },
1565
+ {
1566
+ "epoch": 1.925849639546859,
1567
+ "grad_norm": 10.0885648727417,
1568
+ "learning_rate": 8.644840447575633e-06,
1569
+ "loss": 0.0846,
1570
+ "step": 1870
1571
+ },
1572
+ {
1573
+ "epoch": 1.9361483007209062,
1574
+ "grad_norm": 7.032443046569824,
1575
+ "learning_rate": 8.561956071280563e-06,
1576
+ "loss": 0.1134,
1577
+ "step": 1880
1578
+ },
1579
+ {
1580
+ "epoch": 1.9464469618949538,
1581
+ "grad_norm": 15.94394302368164,
1582
+ "learning_rate": 8.479071694985496e-06,
1583
+ "loss": 0.1097,
1584
+ "step": 1890
1585
+ },
1586
+ {
1587
+ "epoch": 1.956745623069001,
1588
+ "grad_norm": 9.909218788146973,
1589
+ "learning_rate": 8.396187318690428e-06,
1590
+ "loss": 0.0995,
1591
+ "step": 1900
1592
+ },
1593
+ {
1594
+ "epoch": 1.956745623069001,
1595
+ "eval_accuracy": 0.9590628218331617,
1596
+ "eval_accuracy_label_0": 0.9702189132125791,
1597
+ "eval_accuracy_label_1": 0.943705063484779,
1598
+ "eval_f1": 0.9590181542400875,
1599
+ "eval_loss": 0.11290641874074936,
1600
+ "eval_precision": 0.9590551602931409,
1601
+ "eval_recall": 0.9590628218331617,
1602
+ "eval_runtime": 28.6377,
1603
+ "eval_samples_per_second": 542.502,
1604
+ "eval_steps_per_second": 16.971,
1605
+ "step": 1900
1606
+ },
1607
+ {
1608
+ "epoch": 1.9670442842430484,
1609
+ "grad_norm": 15.3870210647583,
1610
+ "learning_rate": 8.31330294239536e-06,
1611
+ "loss": 0.1248,
1612
+ "step": 1910
1613
+ },
1614
+ {
1615
+ "epoch": 1.9773429454170959,
1616
+ "grad_norm": 8.369405746459961,
1617
+ "learning_rate": 8.230418566100292e-06,
1618
+ "loss": 0.0975,
1619
+ "step": 1920
1620
+ },
1621
+ {
1622
+ "epoch": 1.987641606591143,
1623
+ "grad_norm": 20.09193992614746,
1624
+ "learning_rate": 8.147534189805222e-06,
1625
+ "loss": 0.1065,
1626
+ "step": 1930
1627
+ },
1628
+ {
1629
+ "epoch": 1.9979402677651905,
1630
+ "grad_norm": 12.807772636413574,
1631
+ "learning_rate": 8.064649813510154e-06,
1632
+ "loss": 0.1091,
1633
+ "step": 1940
1634
+ },
1635
+ {
1636
+ "epoch": 2.008238928939238,
1637
+ "grad_norm": 11.321664810180664,
1638
+ "learning_rate": 7.981765437215085e-06,
1639
+ "loss": 0.0707,
1640
+ "step": 1950
1641
+ },
1642
+ {
1643
+ "epoch": 2.018537590113285,
1644
+ "grad_norm": 6.500060081481934,
1645
+ "learning_rate": 7.898881060920017e-06,
1646
+ "loss": 0.0548,
1647
+ "step": 1960
1648
+ },
1649
+ {
1650
+ "epoch": 2.028836251287333,
1651
+ "grad_norm": 6.183711528778076,
1652
+ "learning_rate": 7.815996684624949e-06,
1653
+ "loss": 0.0596,
1654
+ "step": 1970
1655
+ },
1656
+ {
1657
+ "epoch": 2.03913491246138,
1658
+ "grad_norm": 10.278242111206055,
1659
+ "learning_rate": 7.733112308329881e-06,
1660
+ "loss": 0.0768,
1661
+ "step": 1980
1662
+ },
1663
+ {
1664
+ "epoch": 2.049433573635427,
1665
+ "grad_norm": 36.13182067871094,
1666
+ "learning_rate": 7.650227932034812e-06,
1667
+ "loss": 0.1081,
1668
+ "step": 1990
1669
+ },
1670
+ {
1671
+ "epoch": 2.059732234809475,
1672
+ "grad_norm": 18.672588348388672,
1673
+ "learning_rate": 7.567343555739744e-06,
1674
+ "loss": 0.0846,
1675
+ "step": 2000
1676
+ },
1677
+ {
1678
+ "epoch": 2.059732234809475,
1679
+ "eval_accuracy": 0.95326982492276,
1680
+ "eval_accuracy_label_0": 0.9422158017557506,
1681
+ "eval_accuracy_label_1": 0.9684870735811534,
1682
+ "eval_f1": 0.9534029516094716,
1683
+ "eval_loss": 0.1361849009990692,
1684
+ "eval_precision": 0.9543244872259893,
1685
+ "eval_recall": 0.95326982492276,
1686
+ "eval_runtime": 28.6073,
1687
+ "eval_samples_per_second": 543.078,
1688
+ "eval_steps_per_second": 16.989,
1689
+ "step": 2000
1690
+ },
1691
+ {
1692
+ "epoch": 2.070030895983522,
1693
+ "grad_norm": 8.882670402526855,
1694
+ "learning_rate": 7.484459179444675e-06,
1695
+ "loss": 0.0747,
1696
+ "step": 2010
1697
+ },
1698
+ {
1699
+ "epoch": 2.0803295571575697,
1700
+ "grad_norm": 9.687372207641602,
1701
+ "learning_rate": 7.401574803149607e-06,
1702
+ "loss": 0.0447,
1703
+ "step": 2020
1704
+ },
1705
+ {
1706
+ "epoch": 2.090628218331617,
1707
+ "grad_norm": 10.967034339904785,
1708
+ "learning_rate": 7.318690426854539e-06,
1709
+ "loss": 0.0504,
1710
+ "step": 2030
1711
+ },
1712
+ {
1713
+ "epoch": 2.100926879505664,
1714
+ "grad_norm": 16.16581153869629,
1715
+ "learning_rate": 7.2358060505594695e-06,
1716
+ "loss": 0.078,
1717
+ "step": 2040
1718
+ },
1719
+ {
1720
+ "epoch": 2.111225540679712,
1721
+ "grad_norm": 10.206809997558594,
1722
+ "learning_rate": 7.1529216742644016e-06,
1723
+ "loss": 0.0731,
1724
+ "step": 2050
1725
+ },
1726
+ {
1727
+ "epoch": 2.121524201853759,
1728
+ "grad_norm": 3.9291794300079346,
1729
+ "learning_rate": 7.070037297969334e-06,
1730
+ "loss": 0.0573,
1731
+ "step": 2060
1732
+ },
1733
+ {
1734
+ "epoch": 2.131822863027806,
1735
+ "grad_norm": 3.0698776245117188,
1736
+ "learning_rate": 6.987152921674265e-06,
1737
+ "loss": 0.0734,
1738
+ "step": 2070
1739
+ },
1740
+ {
1741
+ "epoch": 2.142121524201854,
1742
+ "grad_norm": 23.81843376159668,
1743
+ "learning_rate": 6.904268545379197e-06,
1744
+ "loss": 0.0821,
1745
+ "step": 2080
1746
+ },
1747
+ {
1748
+ "epoch": 2.152420185375901,
1749
+ "grad_norm": 7.545326232910156,
1750
+ "learning_rate": 6.821384169084129e-06,
1751
+ "loss": 0.0453,
1752
+ "step": 2090
1753
+ },
1754
+ {
1755
+ "epoch": 2.1627188465499483,
1756
+ "grad_norm": 17.654476165771484,
1757
+ "learning_rate": 6.7384997927890595e-06,
1758
+ "loss": 0.096,
1759
+ "step": 2100
1760
+ },
1761
+ {
1762
+ "epoch": 2.1627188465499483,
1763
+ "eval_accuracy": 0.9562950566426365,
1764
+ "eval_accuracy_label_0": 0.9466607400822313,
1765
+ "eval_accuracy_label_1": 0.9695579011779104,
1766
+ "eval_f1": 0.9564082597816722,
1767
+ "eval_loss": 0.1383037120103836,
1768
+ "eval_precision": 0.9571555565808465,
1769
+ "eval_recall": 0.9562950566426365,
1770
+ "eval_runtime": 28.6473,
1771
+ "eval_samples_per_second": 542.321,
1772
+ "eval_steps_per_second": 16.965,
1773
+ "step": 2100
1774
+ },
1775
+ {
1776
+ "epoch": 2.173017507723996,
1777
+ "grad_norm": 9.992446899414062,
1778
+ "learning_rate": 6.655615416493992e-06,
1779
+ "loss": 0.027,
1780
+ "step": 2110
1781
+ },
1782
+ {
1783
+ "epoch": 2.183316168898043,
1784
+ "grad_norm": 6.128831386566162,
1785
+ "learning_rate": 6.572731040198923e-06,
1786
+ "loss": 0.0743,
1787
+ "step": 2120
1788
+ },
1789
+ {
1790
+ "epoch": 2.193614830072091,
1791
+ "grad_norm": 18.08496856689453,
1792
+ "learning_rate": 6.489846663903855e-06,
1793
+ "loss": 0.0483,
1794
+ "step": 2130
1795
+ },
1796
+ {
1797
+ "epoch": 2.203913491246138,
1798
+ "grad_norm": 20.862857818603516,
1799
+ "learning_rate": 6.406962287608787e-06,
1800
+ "loss": 0.0872,
1801
+ "step": 2140
1802
+ },
1803
+ {
1804
+ "epoch": 2.214212152420185,
1805
+ "grad_norm": 6.609086513519287,
1806
+ "learning_rate": 6.3240779113137175e-06,
1807
+ "loss": 0.1039,
1808
+ "step": 2150
1809
+ },
1810
+ {
1811
+ "epoch": 2.224510813594233,
1812
+ "grad_norm": 9.900079727172852,
1813
+ "learning_rate": 6.2411935350186496e-06,
1814
+ "loss": 0.08,
1815
+ "step": 2160
1816
+ },
1817
+ {
1818
+ "epoch": 2.23480947476828,
1819
+ "grad_norm": 6.2700700759887695,
1820
+ "learning_rate": 6.158309158723581e-06,
1821
+ "loss": 0.051,
1822
+ "step": 2170
1823
+ },
1824
+ {
1825
+ "epoch": 2.2451081359423277,
1826
+ "grad_norm": 12.434645652770996,
1827
+ "learning_rate": 6.075424782428513e-06,
1828
+ "loss": 0.058,
1829
+ "step": 2180
1830
+ },
1831
+ {
1832
+ "epoch": 2.255406797116375,
1833
+ "grad_norm": 7.681482791900635,
1834
+ "learning_rate": 5.992540406133445e-06,
1835
+ "loss": 0.0752,
1836
+ "step": 2190
1837
+ },
1838
+ {
1839
+ "epoch": 2.265705458290422,
1840
+ "grad_norm": 24.001230239868164,
1841
+ "learning_rate": 5.909656029838376e-06,
1842
+ "loss": 0.0797,
1843
+ "step": 2200
1844
+ },
1845
+ {
1846
+ "epoch": 2.265705458290422,
1847
+ "eval_accuracy": 0.9619593202883625,
1848
+ "eval_accuracy_label_0": 0.9711079008778754,
1849
+ "eval_accuracy_label_1": 0.9493651522104941,
1850
+ "eval_f1": 0.9619302021150672,
1851
+ "eval_loss": 0.11368735879659653,
1852
+ "eval_precision": 0.9619423362488065,
1853
+ "eval_recall": 0.9619593202883625,
1854
+ "eval_runtime": 28.6312,
1855
+ "eval_samples_per_second": 542.625,
1856
+ "eval_steps_per_second": 16.974,
1857
+ "step": 2200
1858
+ },
1859
+ {
1860
+ "epoch": 2.27600411946447,
1861
+ "grad_norm": 14.428683280944824,
1862
+ "learning_rate": 5.8267716535433075e-06,
1863
+ "loss": 0.0506,
1864
+ "step": 2210
1865
+ },
1866
+ {
1867
+ "epoch": 2.286302780638517,
1868
+ "grad_norm": 8.54249382019043,
1869
+ "learning_rate": 5.743887277248239e-06,
1870
+ "loss": 0.06,
1871
+ "step": 2220
1872
+ },
1873
+ {
1874
+ "epoch": 2.296601441812564,
1875
+ "grad_norm": 19.03498077392578,
1876
+ "learning_rate": 5.661002900953171e-06,
1877
+ "loss": 0.0668,
1878
+ "step": 2230
1879
+ },
1880
+ {
1881
+ "epoch": 2.306900102986612,
1882
+ "grad_norm": 10.844647407531738,
1883
+ "learning_rate": 5.578118524658103e-06,
1884
+ "loss": 0.0449,
1885
+ "step": 2240
1886
+ },
1887
+ {
1888
+ "epoch": 2.317198764160659,
1889
+ "grad_norm": 14.049932479858398,
1890
+ "learning_rate": 5.495234148363034e-06,
1891
+ "loss": 0.1016,
1892
+ "step": 2250
1893
+ },
1894
+ {
1895
+ "epoch": 2.3274974253347063,
1896
+ "grad_norm": 6.799467086791992,
1897
+ "learning_rate": 5.4123497720679655e-06,
1898
+ "loss": 0.0576,
1899
+ "step": 2260
1900
+ },
1901
+ {
1902
+ "epoch": 2.337796086508754,
1903
+ "grad_norm": 3.510343551635742,
1904
+ "learning_rate": 5.329465395772897e-06,
1905
+ "loss": 0.0354,
1906
+ "step": 2270
1907
+ },
1908
+ {
1909
+ "epoch": 2.348094747682801,
1910
+ "grad_norm": 17.81386947631836,
1911
+ "learning_rate": 5.246581019477829e-06,
1912
+ "loss": 0.1046,
1913
+ "step": 2280
1914
+ },
1915
+ {
1916
+ "epoch": 2.358393408856849,
1917
+ "grad_norm": 1.548386573791504,
1918
+ "learning_rate": 5.163696643182761e-06,
1919
+ "loss": 0.0688,
1920
+ "step": 2290
1921
+ },
1922
+ {
1923
+ "epoch": 2.368692070030896,
1924
+ "grad_norm": 19.792476654052734,
1925
+ "learning_rate": 5.080812266887692e-06,
1926
+ "loss": 0.0602,
1927
+ "step": 2300
1928
+ },
1929
+ {
1930
+ "epoch": 2.368692070030896,
1931
+ "eval_accuracy": 0.96086508753862,
1932
+ "eval_accuracy_label_0": 0.9664407156350706,
1933
+ "eval_accuracy_label_1": 0.953189536484626,
1934
+ "eval_f1": 0.9608634468691928,
1935
+ "eval_loss": 0.12112918496131897,
1936
+ "eval_precision": 0.9608619366174393,
1937
+ "eval_recall": 0.96086508753862,
1938
+ "eval_runtime": 28.6488,
1939
+ "eval_samples_per_second": 542.291,
1940
+ "eval_steps_per_second": 16.964,
1941
+ "step": 2300
1942
+ },
1943
+ {
1944
+ "epoch": 2.378990731204943,
1945
+ "grad_norm": 14.4805269241333,
1946
+ "learning_rate": 4.997927890592623e-06,
1947
+ "loss": 0.0683,
1948
+ "step": 2310
1949
+ },
1950
+ {
1951
+ "epoch": 2.389289392378991,
1952
+ "grad_norm": 23.142452239990234,
1953
+ "learning_rate": 4.9150435142975555e-06,
1954
+ "loss": 0.0669,
1955
+ "step": 2320
1956
+ },
1957
+ {
1958
+ "epoch": 2.399588053553038,
1959
+ "grad_norm": 17.42975616455078,
1960
+ "learning_rate": 4.832159138002487e-06,
1961
+ "loss": 0.0774,
1962
+ "step": 2330
1963
+ },
1964
+ {
1965
+ "epoch": 2.4098867147270857,
1966
+ "grad_norm": 20.081676483154297,
1967
+ "learning_rate": 4.749274761707419e-06,
1968
+ "loss": 0.0714,
1969
+ "step": 2340
1970
+ },
1971
+ {
1972
+ "epoch": 2.420185375901133,
1973
+ "grad_norm": 15.057238578796387,
1974
+ "learning_rate": 4.66639038541235e-06,
1975
+ "loss": 0.0702,
1976
+ "step": 2350
1977
+ },
1978
+ {
1979
+ "epoch": 2.43048403707518,
1980
+ "grad_norm": 15.039963722229004,
1981
+ "learning_rate": 4.583506009117281e-06,
1982
+ "loss": 0.0548,
1983
+ "step": 2360
1984
+ },
1985
+ {
1986
+ "epoch": 2.4407826982492278,
1987
+ "grad_norm": 10.758746147155762,
1988
+ "learning_rate": 4.5006216328222135e-06,
1989
+ "loss": 0.0444,
1990
+ "step": 2370
1991
+ },
1992
+ {
1993
+ "epoch": 2.451081359423275,
1994
+ "grad_norm": 18.213958740234375,
1995
+ "learning_rate": 4.417737256527145e-06,
1996
+ "loss": 0.0559,
1997
+ "step": 2380
1998
+ },
1999
+ {
2000
+ "epoch": 2.461380020597322,
2001
+ "grad_norm": 17.926952362060547,
2002
+ "learning_rate": 4.334852880232077e-06,
2003
+ "loss": 0.0675,
2004
+ "step": 2390
2005
+ },
2006
+ {
2007
+ "epoch": 2.47167868177137,
2008
+ "grad_norm": 7.6708807945251465,
2009
+ "learning_rate": 4.251968503937008e-06,
2010
+ "loss": 0.0951,
2011
+ "step": 2400
2012
+ },
2013
+ {
2014
+ "epoch": 2.47167868177137,
2015
+ "eval_accuracy": 0.9614443872296602,
2016
+ "eval_accuracy_label_0": 0.962773641515724,
2017
+ "eval_accuracy_label_1": 0.9596145020651675,
2018
+ "eval_f1": 0.9614721624380318,
2019
+ "eval_loss": 0.1193719357252121,
2020
+ "eval_precision": 0.9615409347691732,
2021
+ "eval_recall": 0.9614443872296602,
2022
+ "eval_runtime": 28.6329,
2023
+ "eval_samples_per_second": 542.592,
2024
+ "eval_steps_per_second": 16.973,
2025
+ "step": 2400
2026
+ },
2027
+ {
2028
+ "epoch": 2.481977342945417,
2029
+ "grad_norm": 15.066208839416504,
2030
+ "learning_rate": 4.169084127641939e-06,
2031
+ "loss": 0.0683,
2032
+ "step": 2410
2033
+ },
2034
+ {
2035
+ "epoch": 2.4922760041194643,
2036
+ "grad_norm": 23.18450355529785,
2037
+ "learning_rate": 4.086199751346871e-06,
2038
+ "loss": 0.0626,
2039
+ "step": 2420
2040
+ },
2041
+ {
2042
+ "epoch": 2.502574665293512,
2043
+ "grad_norm": 0.8303961753845215,
2044
+ "learning_rate": 4.003315375051803e-06,
2045
+ "loss": 0.0476,
2046
+ "step": 2430
2047
+ },
2048
+ {
2049
+ "epoch": 2.512873326467559,
2050
+ "grad_norm": 20.618289947509766,
2051
+ "learning_rate": 3.920430998756735e-06,
2052
+ "loss": 0.0582,
2053
+ "step": 2440
2054
+ },
2055
+ {
2056
+ "epoch": 2.5231719876416063,
2057
+ "grad_norm": 6.84626579284668,
2058
+ "learning_rate": 3.837546622461666e-06,
2059
+ "loss": 0.057,
2060
+ "step": 2450
2061
+ },
2062
+ {
2063
+ "epoch": 2.533470648815654,
2064
+ "grad_norm": 4.529855251312256,
2065
+ "learning_rate": 3.7546622461665977e-06,
2066
+ "loss": 0.0523,
2067
+ "step": 2460
2068
+ },
2069
+ {
2070
+ "epoch": 2.543769309989701,
2071
+ "grad_norm": 14.540194511413574,
2072
+ "learning_rate": 3.6717778698715294e-06,
2073
+ "loss": 0.0906,
2074
+ "step": 2470
2075
+ },
2076
+ {
2077
+ "epoch": 2.554067971163749,
2078
+ "grad_norm": 25.749385833740234,
2079
+ "learning_rate": 3.5888934935764615e-06,
2080
+ "loss": 0.0516,
2081
+ "step": 2480
2082
+ },
2083
+ {
2084
+ "epoch": 2.564366632337796,
2085
+ "grad_norm": 12.172739028930664,
2086
+ "learning_rate": 3.5060091172813927e-06,
2087
+ "loss": 0.0597,
2088
+ "step": 2490
2089
+ },
2090
+ {
2091
+ "epoch": 2.5746652935118437,
2092
+ "grad_norm": 1.8584766387939453,
2093
+ "learning_rate": 3.4231247409863244e-06,
2094
+ "loss": 0.0343,
2095
+ "step": 2500
2096
+ },
2097
+ {
2098
+ "epoch": 2.5746652935118437,
2099
+ "eval_accuracy": 0.9628604531410917,
2100
+ "eval_accuracy_label_0": 0.9624402711412379,
2101
+ "eval_accuracy_label_1": 0.9634388863392994,
2102
+ "eval_f1": 0.962897301831431,
2103
+ "eval_loss": 0.12369329482316971,
2104
+ "eval_precision": 0.9630139003703244,
2105
+ "eval_recall": 0.9628604531410917,
2106
+ "eval_runtime": 28.6342,
2107
+ "eval_samples_per_second": 542.569,
2108
+ "eval_steps_per_second": 16.973,
2109
+ "step": 2500
2110
+ },
2111
+ {
2112
+ "epoch": 2.584963954685891,
2113
+ "grad_norm": 15.55650520324707,
2114
+ "learning_rate": 3.340240364691256e-06,
2115
+ "loss": 0.0645,
2116
+ "step": 2510
2117
+ },
2118
+ {
2119
+ "epoch": 2.595262615859938,
2120
+ "grad_norm": 5.339417934417725,
2121
+ "learning_rate": 3.2573559883961873e-06,
2122
+ "loss": 0.0497,
2123
+ "step": 2520
2124
+ },
2125
+ {
2126
+ "epoch": 2.6055612770339858,
2127
+ "grad_norm": 18.813339233398438,
2128
+ "learning_rate": 3.1744716121011194e-06,
2129
+ "loss": 0.0856,
2130
+ "step": 2530
2131
+ },
2132
+ {
2133
+ "epoch": 2.615859938208033,
2134
+ "grad_norm": 18.912582397460938,
2135
+ "learning_rate": 3.0915872358060507e-06,
2136
+ "loss": 0.0684,
2137
+ "step": 2540
2138
+ },
2139
+ {
2140
+ "epoch": 2.62615859938208,
2141
+ "grad_norm": 29.817142486572266,
2142
+ "learning_rate": 3.0087028595109823e-06,
2143
+ "loss": 0.0742,
2144
+ "step": 2550
2145
+ },
2146
+ {
2147
+ "epoch": 2.636457260556128,
2148
+ "grad_norm": 20.53231430053711,
2149
+ "learning_rate": 2.925818483215914e-06,
2150
+ "loss": 0.0675,
2151
+ "step": 2560
2152
+ },
2153
+ {
2154
+ "epoch": 2.646755921730175,
2155
+ "grad_norm": 1.9606025218963623,
2156
+ "learning_rate": 2.8429341069208453e-06,
2157
+ "loss": 0.0319,
2158
+ "step": 2570
2159
+ },
2160
+ {
2161
+ "epoch": 2.6570545829042223,
2162
+ "grad_norm": 15.020525932312012,
2163
+ "learning_rate": 2.7600497306257774e-06,
2164
+ "loss": 0.0681,
2165
+ "step": 2580
2166
+ },
2167
+ {
2168
+ "epoch": 2.66735324407827,
2169
+ "grad_norm": 13.114953994750977,
2170
+ "learning_rate": 2.677165354330709e-06,
2171
+ "loss": 0.0348,
2172
+ "step": 2590
2173
+ },
2174
+ {
2175
+ "epoch": 2.677651905252317,
2176
+ "grad_norm": 25.307437896728516,
2177
+ "learning_rate": 2.5942809780356403e-06,
2178
+ "loss": 0.0512,
2179
+ "step": 2600
2180
+ },
2181
+ {
2182
+ "epoch": 2.677651905252317,
2183
+ "eval_accuracy": 0.9625386199794027,
2184
+ "eval_accuracy_label_0": 0.9737748638737638,
2185
+ "eval_accuracy_label_1": 0.947070521646015,
2186
+ "eval_f1": 0.962493472042095,
2187
+ "eval_loss": 0.12632428109645844,
2188
+ "eval_precision": 0.9625475718092084,
2189
+ "eval_recall": 0.9625386199794027,
2190
+ "eval_runtime": 28.7287,
2191
+ "eval_samples_per_second": 540.783,
2192
+ "eval_steps_per_second": 16.917,
2193
+ "step": 2600
2194
+ },
2195
+ {
2196
+ "epoch": 2.6879505664263643,
2197
+ "grad_norm": 19.501306533813477,
2198
+ "learning_rate": 2.5113966017405724e-06,
2199
+ "loss": 0.0515,
2200
+ "step": 2610
2201
+ },
2202
+ {
2203
+ "epoch": 2.698249227600412,
2204
+ "grad_norm": 17.550600051879883,
2205
+ "learning_rate": 2.4285122254455037e-06,
2206
+ "loss": 0.0491,
2207
+ "step": 2620
2208
+ },
2209
+ {
2210
+ "epoch": 2.708547888774459,
2211
+ "grad_norm": 36.03532409667969,
2212
+ "learning_rate": 2.3456278491504353e-06,
2213
+ "loss": 0.085,
2214
+ "step": 2630
2215
+ },
2216
+ {
2217
+ "epoch": 2.718846549948507,
2218
+ "grad_norm": 11.236651420593262,
2219
+ "learning_rate": 2.262743472855367e-06,
2220
+ "loss": 0.0656,
2221
+ "step": 2640
2222
+ },
2223
+ {
2224
+ "epoch": 2.729145211122554,
2225
+ "grad_norm": 12.065185546875,
2226
+ "learning_rate": 2.1798590965602987e-06,
2227
+ "loss": 0.0698,
2228
+ "step": 2650
2229
+ },
2230
+ {
2231
+ "epoch": 2.7394438722966017,
2232
+ "grad_norm": 0.8977580070495605,
2233
+ "learning_rate": 2.0969747202652304e-06,
2234
+ "loss": 0.0646,
2235
+ "step": 2660
2236
+ },
2237
+ {
2238
+ "epoch": 2.749742533470649,
2239
+ "grad_norm": 14.258803367614746,
2240
+ "learning_rate": 2.0140903439701616e-06,
2241
+ "loss": 0.065,
2242
+ "step": 2670
2243
+ },
2244
+ {
2245
+ "epoch": 2.760041194644696,
2246
+ "grad_norm": 1.7737594842910767,
2247
+ "learning_rate": 1.9312059676750933e-06,
2248
+ "loss": 0.0412,
2249
+ "step": 2680
2250
+ },
2251
+ {
2252
+ "epoch": 2.7703398558187438,
2253
+ "grad_norm": 5.75368595123291,
2254
+ "learning_rate": 1.8483215913800252e-06,
2255
+ "loss": 0.0681,
2256
+ "step": 2690
2257
+ },
2258
+ {
2259
+ "epoch": 2.780638516992791,
2260
+ "grad_norm": 44.601314544677734,
2261
+ "learning_rate": 1.7654372150849566e-06,
2262
+ "loss": 0.0532,
2263
+ "step": 2700
2264
+ },
2265
+ {
2266
+ "epoch": 2.780638516992791,
2267
+ "eval_accuracy": 0.9633110195674562,
2268
+ "eval_accuracy_label_0": 0.9705522835870652,
2269
+ "eval_accuracy_label_1": 0.9533425118555913,
2270
+ "eval_f1": 0.9632954018759314,
2271
+ "eval_loss": 0.12292636930942535,
2272
+ "eval_precision": 0.963292880058248,
2273
+ "eval_recall": 0.9633110195674562,
2274
+ "eval_runtime": 28.687,
2275
+ "eval_samples_per_second": 541.569,
2276
+ "eval_steps_per_second": 16.941,
2277
+ "step": 2700
2278
+ },
2279
+ {
2280
+ "epoch": 2.790937178166838,
2281
+ "grad_norm": 12.678955078125,
2282
+ "learning_rate": 1.682552838789888e-06,
2283
+ "loss": 0.0683,
2284
+ "step": 2710
2285
+ },
2286
+ {
2287
+ "epoch": 2.801235839340886,
2288
+ "grad_norm": 1.118263602256775,
2289
+ "learning_rate": 1.59966846249482e-06,
2290
+ "loss": 0.0303,
2291
+ "step": 2720
2292
+ },
2293
+ {
2294
+ "epoch": 2.811534500514933,
2295
+ "grad_norm": 14.192521095275879,
2296
+ "learning_rate": 1.5167840861997514e-06,
2297
+ "loss": 0.0681,
2298
+ "step": 2730
2299
+ },
2300
+ {
2301
+ "epoch": 2.8218331616889802,
2302
+ "grad_norm": 18.46016502380371,
2303
+ "learning_rate": 1.4338997099046831e-06,
2304
+ "loss": 0.0686,
2305
+ "step": 2740
2306
+ },
2307
+ {
2308
+ "epoch": 2.832131822863028,
2309
+ "grad_norm": 15.062724113464355,
2310
+ "learning_rate": 1.3510153336096146e-06,
2311
+ "loss": 0.0521,
2312
+ "step": 2750
2313
+ },
2314
+ {
2315
+ "epoch": 2.842430484037075,
2316
+ "grad_norm": 7.8030900955200195,
2317
+ "learning_rate": 1.2681309573145465e-06,
2318
+ "loss": 0.0923,
2319
+ "step": 2760
2320
+ },
2321
+ {
2322
+ "epoch": 2.8527291452111223,
2323
+ "grad_norm": 5.273398399353027,
2324
+ "learning_rate": 1.185246581019478e-06,
2325
+ "loss": 0.0471,
2326
+ "step": 2770
2327
+ },
2328
+ {
2329
+ "epoch": 2.86302780638517,
2330
+ "grad_norm": 10.055742263793945,
2331
+ "learning_rate": 1.1023622047244096e-06,
2332
+ "loss": 0.0517,
2333
+ "step": 2780
2334
+ },
2335
+ {
2336
+ "epoch": 2.873326467559217,
2337
+ "grad_norm": 22.551183700561523,
2338
+ "learning_rate": 1.0194778284293413e-06,
2339
+ "loss": 0.0497,
2340
+ "step": 2790
2341
+ },
2342
+ {
2343
+ "epoch": 2.883625128733265,
2344
+ "grad_norm": 10.616918563842773,
2345
+ "learning_rate": 9.365934521342727e-07,
2346
+ "loss": 0.0673,
2347
+ "step": 2800
2348
+ },
2349
+ {
2350
+ "epoch": 2.883625128733265,
2351
+ "eval_accuracy": 0.9644052523171988,
2352
+ "eval_accuracy_label_0": 0.9678853205911768,
2353
+ "eval_accuracy_label_1": 0.9596145020651675,
2354
+ "eval_f1": 0.9644144636556568,
2355
+ "eval_loss": 0.12062814831733704,
2356
+ "eval_precision": 0.9644287833599177,
2357
+ "eval_recall": 0.9644052523171988,
2358
+ "eval_runtime": 28.6805,
2359
+ "eval_samples_per_second": 541.691,
2360
+ "eval_steps_per_second": 16.945,
2361
+ "step": 2800
2362
+ },
2363
+ {
2364
+ "epoch": 2.893923789907312,
2365
+ "grad_norm": 12.785795211791992,
2366
+ "learning_rate": 8.537090758392044e-07,
2367
+ "loss": 0.0662,
2368
+ "step": 2810
2369
+ },
2370
+ {
2371
+ "epoch": 2.9042224510813597,
2372
+ "grad_norm": 8.8677396774292,
2373
+ "learning_rate": 7.70824699544136e-07,
2374
+ "loss": 0.0789,
2375
+ "step": 2820
2376
+ },
2377
+ {
2378
+ "epoch": 2.914521112255407,
2379
+ "grad_norm": 19.09882354736328,
2380
+ "learning_rate": 6.879403232490677e-07,
2381
+ "loss": 0.0358,
2382
+ "step": 2830
2383
+ },
2384
+ {
2385
+ "epoch": 2.924819773429454,
2386
+ "grad_norm": 13.237493515014648,
2387
+ "learning_rate": 6.050559469539992e-07,
2388
+ "loss": 0.069,
2389
+ "step": 2840
2390
+ },
2391
+ {
2392
+ "epoch": 2.9351184346035017,
2393
+ "grad_norm": 0.5621568560600281,
2394
+ "learning_rate": 5.221715706589308e-07,
2395
+ "loss": 0.0503,
2396
+ "step": 2850
2397
+ },
2398
+ {
2399
+ "epoch": 2.945417095777549,
2400
+ "grad_norm": 11.271636009216309,
2401
+ "learning_rate": 4.392871943638625e-07,
2402
+ "loss": 0.0379,
2403
+ "step": 2860
2404
+ },
2405
+ {
2406
+ "epoch": 2.955715756951596,
2407
+ "grad_norm": 14.567364692687988,
2408
+ "learning_rate": 3.564028180687941e-07,
2409
+ "loss": 0.0489,
2410
+ "step": 2870
2411
+ },
2412
+ {
2413
+ "epoch": 2.966014418125644,
2414
+ "grad_norm": 11.992318153381348,
2415
+ "learning_rate": 2.7351844177372567e-07,
2416
+ "loss": 0.0569,
2417
+ "step": 2880
2418
+ },
2419
+ {
2420
+ "epoch": 2.976313079299691,
2421
+ "grad_norm": 9.122631072998047,
2422
+ "learning_rate": 1.9063406547865727e-07,
2423
+ "loss": 0.0704,
2424
+ "step": 2890
2425
+ },
2426
+ {
2427
+ "epoch": 2.9866117404737382,
2428
+ "grad_norm": 28.3140869140625,
2429
+ "learning_rate": 1.077496891835889e-07,
2430
+ "loss": 0.0209,
2431
+ "step": 2900
2432
+ },
2433
+ {
2434
+ "epoch": 2.9866117404737382,
2435
+ "eval_accuracy": 0.9644696189495365,
2436
+ "eval_accuracy_label_0": 0.9708856539615512,
2437
+ "eval_accuracy_label_1": 0.9556371424200704,
2438
+ "eval_f1": 0.9644590852602763,
2439
+ "eval_loss": 0.11849933117628098,
2440
+ "eval_precision": 0.9644549735327069,
2441
+ "eval_recall": 0.9644696189495365,
2442
+ "eval_runtime": 28.6233,
2443
+ "eval_samples_per_second": 542.775,
2444
+ "eval_steps_per_second": 16.979,
2445
+ "step": 2900
2446
+ },
2447
+ {
2448
+ "epoch": 2.996910401647786,
2449
+ "grad_norm": 26.769432067871094,
2450
+ "learning_rate": 2.4865312888520517e-08,
2451
+ "loss": 0.0621,
2452
+ "step": 2910
2453
+ },
2454
+ {
2455
+ "epoch": 3.0,
2456
+ "step": 2913,
2457
+ "total_flos": 2227577912202240.0,
2458
+ "train_loss": 0.15083247099878697,
2459
+ "train_runtime": 1636.2013,
2460
+ "train_samples_per_second": 113.936,
2461
+ "train_steps_per_second": 1.78
2462
+ },
2463
+ {
2464
+ "epoch": 3.0,
2465
+ "eval_accuracy": 0.9645339855818743,
2466
+ "eval_accuracy_label_0": 0.9707745305033892,
2467
+ "eval_accuracy_label_1": 0.9559430931620009,
2468
+ "eval_f1": 0.9645246094465593,
2469
+ "eval_loss": 0.11850666999816895,
2470
+ "eval_precision": 0.9645203525935409,
2471
+ "eval_recall": 0.9645339855818743,
2472
+ "eval_runtime": 28.6606,
2473
+ "eval_samples_per_second": 542.068,
2474
+ "eval_steps_per_second": 16.957,
2475
+ "step": 2913
2476
+ }
2477
+ ],
2478
+ "logging_steps": 10,
2479
+ "max_steps": 2913,
2480
+ "num_input_tokens_seen": 0,
2481
+ "num_train_epochs": 3,
2482
+ "save_steps": 1000,
2483
+ "stateful_callbacks": {
2484
+ "TrainerControl": {
2485
+ "args": {
2486
+ "should_epoch_stop": false,
2487
+ "should_evaluate": false,
2488
+ "should_log": false,
2489
+ "should_save": true,
2490
+ "should_training_stop": true
2491
+ },
2492
+ "attributes": {}
2493
+ }
2494
+ },
2495
+ "total_flos": 2227577912202240.0,
2496
+ "train_batch_size": 32,
2497
+ "trial_name": null,
2498
+ "trial_params": null
2499
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b8991243179bbe322d3159dfe9a2a2430235f8765d622db8c000b59736a76f4
3
+ size 5112