File size: 7,138 Bytes
bc83a40 f791de6 bc83a40 f791de6 bc83a40 f791de6 bc83a40 f791de6 bc83a40 f791de6 bc83a40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
---
license: mit
datasets:
- OpenAssistant/oasst1
language:
- en
tags:
- sft
pipeline_tag: text-generation
widget:
- text: >-
<|prompter|>What is a meme, and what's the history behind this
word?<|endoftext|><|assistant|>
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|>
- text: <|prompter|>Write a story about future of AI development<|endoftext|><|assistant|>
---
# Load Merged Model (Recommended, identical configuration to a fine-tuned model)
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
repo_id = "jordiclive/falcon-40b-lora-sft-stage2-1.1k"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForCausalLM.from_pretrained(
repo_id,
torch_dtype=dtype,
trust_remote_code=True,
)
```
## Model Details
- **Developed** as part of the OpenAssistant Project
- **Model type:** LoRA (PEFT)
- **Language:** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
- **Finetuned from:** [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-4b)
- **Model type:** Causal decoder-only transformer language model
- **Weights & Biases:** [Training log1](https://wandb.ai/open-assistant/public-sft/runs/q0q9lce4)
[Training log2](https://wandb.ai/open-assistant/public-sft/runs/qqok9ru2?workspace=user-jordanclive)
# LoRA Adapter for Falcon 40B trained on oasst-top1
This repo contains a **Falcon 40B** LoRA fine-tuned model and the low-rank adapter fit on datasets part of the OpenAssistant project.
This version of the weights was trained with the following hyperparameters:
SFT 1
- Epochs: 2
- Batch size: 128
- Max Length: 2048
- Learning rate: 1e-4
- Lora _r_: 64
- Lora Alpha: 16
- Lora target modules: ["dense_4h_to_h", "dense", "query_key_value", "dense_h_to_4h"]
SFT2
- Epochs: 10
- Batch size: 128
The model was trained with flash attention and gradient checkpointing and deepspeed stage 3 on 8 x A100 80gb
Dataset:
SFT1:
```
- oa_leet10k:
val_split: 0.05
max_val_set: 250
- cmu_wiki_qa:
val_split: 0.05
- joke:
val_split: 0.05
- webgpt:
val_split: 0.05
max_val_set: 250
- alpaca_gpt4:
val_split: 0.025
max_val_set: 250
- gpteacher_roleplay:
val_split: 0.05
- wizardlm_70k:
val_split: 0.05
max_val_set: 500
- poem_instructions:
val_split: 0.025
- tell_a_joke:
val_split: 0.05
max_val_set: 250
- gpt4all:
val_split: 0.01
max_val_set: 1000
- minimath:
val_split: 0.05
- humaneval_mbpp_codegen_qa:
val_split: 0.05
- humaneval_mbpp_testgen_qa:
val_split: 0.05
- dolly15k:
val_split: 0.05
max_val_set: 300
- recipes:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
- vicuna:
fraction: 0.5
val_split: 0.025
max_val_set: 250
- oa_wiki_qa_bart_10000row:
val_split: 0.05
max_val_set: 250
- grade_school_math_instructions:
val_split: 0.05
```
SFT2
```
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0
input_file_path: 2023-05-06_OASST_labels.jsonl.gz
val_split: 0.05
top_k: 1
- lima:
val_split: 0.05
max_val_set: 50
```
## Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should
start generating the assistant reply.
# Example Inference code (Prompt Template)
```
model = model.to(device)
if dtype == torch.float16:
model = model.half()
# Choose Generation parameters
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
)
def format_system_prompt(prompt, eos_token=tokenizer.eos_token):
return "{}{}{}{}".format("<|prompter|>", prompt, eos_token, "<|assistant|>")
def generate(prompt, generation_config=generation_config, max_new_tokens=2048, device=device):
prompt = format_system_prompt(prompt,eos_token=tokenizer.eos_token) # OpenAssistant Prompt Format expected
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
eos_token_id=tokenizer.eos_token_id,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print("Text generated:")
print(output)
return output
```
## LoRA weights
If you want to use the LoRA weights separately, several special token embeddings also need to be added.
```
base_model_id = "tiiuae/falcon-40b"
import torch
import transformers
from huggingface_hub import hf_hub_download
from peft import PeftModel
def add_embeddings(model, embed_path, tokenizer):
old_embeddings = model.get_input_embeddings()
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
new_embeddings = torch.nn.Embedding(old_num_tokens, old_embedding_dim)
new_embeddings.to(old_embeddings.weight.device, dtype=old_embeddings.weight.dtype)
model._init_weights(new_embeddings)
embed_weights = torch.load(embed_path, map_location=old_embeddings.weight.device)
vocab_size = tokenizer.vocab_size
new_embeddings.weight.data[:vocab_size, :] = old_embeddings.weight.data[:vocab_size, :]
new_embeddings.weight.data[vocab_size : vocab_size + embed_weights.shape[0], :] = embed_weights.to(
new_embeddings.weight.dtype
).to(new_embeddings.weight.device)
model.set_input_embeddings(new_embeddings)
model.tie_weights()
def load_peft_model(model, peft_model_path, tokenizer):
embed_weights = hf_hub_download(peft_model_path, "extra_embeddings.pt")
model.resize_token_embeddings(tokenizer.vocab_size + torch.load(embed_weights).shape[0])
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model = PeftModel.from_pretrained(
model,
model_id=peft_model_path,
torch_dtype=model.dtype,
)
model.eos_token_id = tokenizer.eos_token_id
add_embeddings(model, embed_weights, tokenizer)
return model
def load_lora_model(base_model_id, tokenizer, device, dtype):
model = transformers.AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=dtype,
trust_remote_code=True,
)
model = load_peft_model(model, repo_id, tokenizer)
model = model.to(device)
return model
model = load_lora_model(base_model_id=base_model_id, tokenizer=tokenizer, device=device, dtype=dtype)
```
|