metadata
license: mit
datasets:
- sahil2801/CodeAlpaca-20k
- yahma/alpaca-cleaned
- databricks/databricks-dolly-15k
- OpenAssistant/oasst1
- jeffwan/sharegpt_vicuna
- qwedsacf/grade-school-math-instructions
- vicgalle/alpaca-gpt4
language:
- en
tags:
- sft
pipeline_tag: text-generation
widget:
- text: >-
<|prompter|>What is a meme, and what's the history behind this
word?</s><|assistant|>
- text: <|prompter|>What's the Earth total population</s><|assistant|>
- text: <|prompter|>Write a story about future of AI development</s><|assistant|>
LoRA Adapter for LLaMA 33B 'pre-trained' on several datasets part of the OpenAssistant project
This repo contains a low-rank adapter for LLaMA 33B fit on datasets part of the OpenAssistant project.
The model was trained with flash attention and gradient checkpointing and deepspeed stage 2 on 8 x A100 80gb
Dataset Details
- sahil2801/CodeAlpaca-20k
- yahma/alpaca-cleaned
- databricks/databricks-dolly-15k
- OpenAssistant/oasst1
- jeffwan/sharegpt_vicuna
- qwedsacf/grade-school-math-instructions
- vicgalle/alpaca-gpt4
Model Details
Developed as part of the OpenAssistant Project
Model type: PEFT Adapter for frozen LLaMA
Language: English
Epochs: 1
Batch size: 128
Max Length: 2048
Learning rate: 5e-5
Lora r: 16
Lora Alpha: 32
Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
<|prompter|>
and <|assistant|>
. Each turn ends with a <|endoftext|>
token.
Input prompt example:
<|prompter|>What is a meme, and what's the history behind this word?</s><|assistant|>
The input ends with the <|assistant|>
token to signal that the model should
start generating the assistant reply.
Example Inference Code (Note several embeddings need to be loaded along with the LoRA weights):
from pathlib import Path
import torch
import transformers
from huggingface_hub import hf_hub_download
from peft import PeftModel
from transformers import GenerationConfig
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
repo_id = "jordiclive/alpaca_gpt4-dolly_15k-vicuna-lora-30b-r64"
base_model = "decapoda-research/llama-30b-hf"
# Model Loading
def transfer_embeddings(model, embed_path, tokenizer):
old_embeddings = model.get_input_embeddings()
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
new_embeddings = torch.nn.Embedding(old_num_tokens, old_embedding_dim)
new_embeddings.to(old_embeddings.weight.device, dtype=old_embeddings.weight.dtype)
model._init_weights(new_embeddings)
embed_weights = torch.load(embed_path, map_location=old_embeddings.weight.device)
vocab_size = tokenizer.vocab_size
new_embeddings.weight.data[:vocab_size, :] = old_embeddings.weight.data[:vocab_size, :]
new_embeddings.weight.data[vocab_size : vocab_size + embed_weights.shape[0], :] = embed_weights.weight.data.to(
new_embeddings.weight.dtype
).to(new_embeddings.weight.device)
model.set_input_embeddings(new_embeddings)
model.tie_weights()
def load_peft_model(model, peft_model_path, tokenizer):
embed_weights = hf_hub_download(peft_model_path, "extra_embeddings.pt")
model.resize_token_embeddings(tokenizer.vocab_size + embed_weights.shape[0])
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model = PeftModel.from_pretrained(
model,
model_id=peft_model_path,
torch_dtype=model.dtype,
)
model.eos_token_id = tokenizer.eos_token_id
transfer_embeddings(model, Path(peft_model_path).joinpath("extra_embeddings.pt"), tokenizer)
return model
tokenizer = transformers.AutoTokenizer.from_pretrained(repo_id)
model = transformers.AutoModelForCausalLM.from_pretrained(
base_model, torch_dtype=dtype, trust_remote_code=True, cache_dir="/mnt/data/jordiclive/data_cache"
)
model = load_peft_model(model, repo_id, tokenizer)
# device configuration
model = model.to(device)
# Choose Generation parameters
generation_config = GenerationConfig(
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
)
def format_system_prompt(prompt, eos_token="</s>"):
return "{}{}{}{}".format("<|prompter|>", prompt, eos_token, "<|assistant|>")
def generate(prompt, generation_config=generation_config, max_new_tokens=2048, device=device):
prompt = format_system_prompt(prompt) # OpenAssistant Prompt Format expected
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
eos_token_id=model.eos_token_id,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
print("Text generated:")
print(output)
return output
generate("What is a meme, and what's the history behind this word?")
generate("What's the Earth total population")
generate("Write a story about future of AI development")