joshuapb commited on
Commit
6a810b7
·
verified ·
1 Parent(s): eb2436f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,848 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:100
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: 'Fig. 8. The accuracy of instruct-GPT series models of different
35
+ sizes (left to right, small to large). Larger model doing better on binary classification
36
+ of answerable and unanswerable questions in SelfAware eval. (Image source: Yin
37
+ et al. 2023)
38
+
39
+ Another way to assess the model’s awareness of unknown knowledge is to measure
40
+ the model’s output uncertainty. When a question is in-between known and unknown,
41
+ the model is expected to demonstrate the right level of confidence.
42
+
43
+ The experiment by Kadavath et al. (2022) showed that LLMs are shown to be well
44
+ calibrated in their estimation probabilities of answer correctness on diverse
45
+ multiple choice questions in a format with visible lettered answer options (MMLU,
46
+ TruthfulQA, QuALITY, LogiQA), meaning that the predicted probability coincides
47
+ with the frequency of that answer being true. RLHF fine-tuning makes the model
48
+ poorly calibrated, but higher sampling temperature leads to better calibration
49
+ results.'
50
+ sentences:
51
+ - What effect does the slower acquisition of new knowledge compared to established
52
+ knowledge have on the effectiveness of large language models in practical scenarios?
53
+ - How do discrepancies identified during the final output review phase affect the
54
+ overall quality of the generated responses?
55
+ - What effect does reinforcement learning from human feedback (RLHF) fine-tuning
56
+ have on how well large language models assess the accuracy of their answers?
57
+ - source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based
58
+ on how likely the model outputs correct answers. (Image source: Gekhman et al.
59
+ 2024)
60
+
61
+ Some interesting observations of the experiments, where dev set accuracy is considered
62
+ a proxy for hallucinations.
63
+
64
+
65
+ Unknown examples are fitted substantially slower than Known.
66
+
67
+ The best dev performance is obtained when the LLM fits the majority of the Known
68
+ training examples but only a few of the Unknown ones. The model starts to hallucinate
69
+ when it learns most of the Unknown examples.
70
+
71
+ Among Known examples, MaybeKnown cases result in better overall performance, more
72
+ essential than HighlyKnown ones.'
73
+ sentences:
74
+ - What is the relationship between the structural formatting of inquiries and the
75
+ occurrence of calibration errors in artificial intelligence models, and in what
76
+ ways can this understanding contribute to the optimization of model training processes?
77
+ - What are the benefits of integrating a pretrained Natural Language Inference (NLI)
78
+ model with MPNet when assessing the reliability of reasoning paths in knowledge
79
+ retrieval?
80
+ - In what ways do the classifications of Known versus Unknown examples influence
81
+ the propensity of AI models to generate hallucinations during their training processes?
82
+ - source_sentence: 'Fig. 3. The evaluation framework for the FactualityPrompt benchmark.(Image
83
+ source: Lee, et al. 2022)
84
+
85
+ Given the model continuation and paired Wikipedia text, two evaluation metrics
86
+ for hallucination are considered:
87
+
88
+
89
+ Hallucination NE (Named Entity) errors: Using a pretrained entity detection model
90
+ and document-level grounding, this metric measures the fraction of detected named
91
+ entities that do not appear in the ground truth document.
92
+
93
+ Entailment ratios: Using a RoBERTa model fine-tuned on MNLI and sentence-level
94
+ knowledge grounding, this metric calculates the fraction of generated sentences
95
+ that are marked as relevant to the paired Wikipedia sentence by the entailment
96
+ model.'
97
+ sentences:
98
+ - What impact does the implementation of a pretrained query-document relevance model
99
+ have on the process of document selection in research methodologies?
100
+ - In what ways does the sequence in which information is delivered in AI-generated
101
+ responses influence the likelihood of generating inaccuracies or hallucinations?
102
+ - In what ways does the FactualityPrompt benchmark assess the performance of named
103
+ entity detection models, particularly in relation to errors arising from hallucinated
104
+ named entities?
105
+ - source_sentence: 'Fig. 1. Knowledge categorization of close-book QA examples based
106
+ on how likely the model outputs correct answers. (Image source: Gekhman et al.
107
+ 2024)
108
+
109
+ Some interesting observations of the experiments, where dev set accuracy is considered
110
+ a proxy for hallucinations.
111
+
112
+
113
+ Unknown examples are fitted substantially slower than Known.
114
+
115
+ The best dev performance is obtained when the LLM fits the majority of the Known
116
+ training examples but only a few of the Unknown ones. The model starts to hallucinate
117
+ when it learns most of the Unknown examples.
118
+
119
+ Among Known examples, MaybeKnown cases result in better overall performance, more
120
+ essential than HighlyKnown ones.'
121
+ sentences:
122
+ - In what ways does the inherently adversarial structure of TruthfulQA inquiries
123
+ facilitate the detection of prevalent fallacies in human cognitive processes,
124
+ and what implications does this have for understanding the constraints of expansive
125
+ language models?
126
+ - In what ways do MaybeKnown cases influence the performance of a model when contrasted
127
+ with HighlyKnown examples, particularly in relation to the occurrence of hallucinations?
128
+ - In what ways does the Self-RAG framework leverage reflection tokens to enhance
129
+ the quality of its generated outputs, and what implications does this have for
130
+ the overall generation process?
131
+ - source_sentence: 'Fine-tuning New Knowledge#
132
+
133
+ Fine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common
134
+ technique for improving certain capabilities of the model like instruction following.
135
+ Introducing new knowledge at the fine-tuning stage is hard to avoid.
136
+
137
+ Fine-tuning usually consumes much less compute, making it debatable whether the
138
+ model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et
139
+ al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge
140
+ encourages hallucinations. They found that (1) LLMs learn fine-tuning examples
141
+ with new knowledge slower than other examples with knowledge consistent with the
142
+ pre-existing knowledge of the model; (2) Once the examples with new knowledge
143
+ are eventually learned, they increase the model’s tendency to hallucinate.'
144
+ sentences:
145
+ - How does the IsRel token function in the retrieval process, and what impact does
146
+ it have on the relevance of generated content to reduce hallucination?
147
+ - What is the relationship between the calibration of AI models and the effectiveness
148
+ of verbalized probabilities when applied to tasks of varying difficulty levels?
149
+ - How do the results presented by Gekhman et al. in their 2024 study inform our
150
+ understanding of the reliability metrics associated with large language models
151
+ (LLMs) when subjected to fine-tuning with novel datasets?
152
+ model-index:
153
+ - name: BGE base Financial Matryoshka
154
+ results:
155
+ - task:
156
+ type: information-retrieval
157
+ name: Information Retrieval
158
+ dataset:
159
+ name: dim 768
160
+ type: dim_768
161
+ metrics:
162
+ - type: cosine_accuracy@1
163
+ value: 0.828125
164
+ name: Cosine Accuracy@1
165
+ - type: cosine_accuracy@3
166
+ value: 0.9635416666666666
167
+ name: Cosine Accuracy@3
168
+ - type: cosine_accuracy@5
169
+ value: 0.9739583333333334
170
+ name: Cosine Accuracy@5
171
+ - type: cosine_accuracy@10
172
+ value: 0.9947916666666666
173
+ name: Cosine Accuracy@10
174
+ - type: cosine_precision@1
175
+ value: 0.828125
176
+ name: Cosine Precision@1
177
+ - type: cosine_precision@3
178
+ value: 0.3211805555555556
179
+ name: Cosine Precision@3
180
+ - type: cosine_precision@5
181
+ value: 0.1947916666666666
182
+ name: Cosine Precision@5
183
+ - type: cosine_precision@10
184
+ value: 0.09947916666666667
185
+ name: Cosine Precision@10
186
+ - type: cosine_recall@1
187
+ value: 0.828125
188
+ name: Cosine Recall@1
189
+ - type: cosine_recall@3
190
+ value: 0.9635416666666666
191
+ name: Cosine Recall@3
192
+ - type: cosine_recall@5
193
+ value: 0.9739583333333334
194
+ name: Cosine Recall@5
195
+ - type: cosine_recall@10
196
+ value: 0.9947916666666666
197
+ name: Cosine Recall@10
198
+ - type: cosine_ndcg@10
199
+ value: 0.9220150687007592
200
+ name: Cosine Ndcg@10
201
+ - type: cosine_mrr@10
202
+ value: 0.8976707175925925
203
+ name: Cosine Mrr@10
204
+ - type: cosine_map@100
205
+ value: 0.8981047453703703
206
+ name: Cosine Map@100
207
+ - task:
208
+ type: information-retrieval
209
+ name: Information Retrieval
210
+ dataset:
211
+ name: dim 512
212
+ type: dim_512
213
+ metrics:
214
+ - type: cosine_accuracy@1
215
+ value: 0.8020833333333334
216
+ name: Cosine Accuracy@1
217
+ - type: cosine_accuracy@3
218
+ value: 0.9635416666666666
219
+ name: Cosine Accuracy@3
220
+ - type: cosine_accuracy@5
221
+ value: 0.9739583333333334
222
+ name: Cosine Accuracy@5
223
+ - type: cosine_accuracy@10
224
+ value: 0.9895833333333334
225
+ name: Cosine Accuracy@10
226
+ - type: cosine_precision@1
227
+ value: 0.8020833333333334
228
+ name: Cosine Precision@1
229
+ - type: cosine_precision@3
230
+ value: 0.3211805555555556
231
+ name: Cosine Precision@3
232
+ - type: cosine_precision@5
233
+ value: 0.1947916666666666
234
+ name: Cosine Precision@5
235
+ - type: cosine_precision@10
236
+ value: 0.09895833333333333
237
+ name: Cosine Precision@10
238
+ - type: cosine_recall@1
239
+ value: 0.8020833333333334
240
+ name: Cosine Recall@1
241
+ - type: cosine_recall@3
242
+ value: 0.9635416666666666
243
+ name: Cosine Recall@3
244
+ - type: cosine_recall@5
245
+ value: 0.9739583333333334
246
+ name: Cosine Recall@5
247
+ - type: cosine_recall@10
248
+ value: 0.9895833333333334
249
+ name: Cosine Recall@10
250
+ - type: cosine_ndcg@10
251
+ value: 0.9077325270335209
252
+ name: Cosine Ndcg@10
253
+ - type: cosine_mrr@10
254
+ value: 0.880220734126984
255
+ name: Cosine Mrr@10
256
+ - type: cosine_map@100
257
+ value: 0.8810414411976911
258
+ name: Cosine Map@100
259
+ - task:
260
+ type: information-retrieval
261
+ name: Information Retrieval
262
+ dataset:
263
+ name: dim 256
264
+ type: dim_256
265
+ metrics:
266
+ - type: cosine_accuracy@1
267
+ value: 0.796875
268
+ name: Cosine Accuracy@1
269
+ - type: cosine_accuracy@3
270
+ value: 0.9583333333333334
271
+ name: Cosine Accuracy@3
272
+ - type: cosine_accuracy@5
273
+ value: 0.96875
274
+ name: Cosine Accuracy@5
275
+ - type: cosine_accuracy@10
276
+ value: 0.9791666666666666
277
+ name: Cosine Accuracy@10
278
+ - type: cosine_precision@1
279
+ value: 0.796875
280
+ name: Cosine Precision@1
281
+ - type: cosine_precision@3
282
+ value: 0.3194444444444445
283
+ name: Cosine Precision@3
284
+ - type: cosine_precision@5
285
+ value: 0.19374999999999998
286
+ name: Cosine Precision@5
287
+ - type: cosine_precision@10
288
+ value: 0.09791666666666665
289
+ name: Cosine Precision@10
290
+ - type: cosine_recall@1
291
+ value: 0.796875
292
+ name: Cosine Recall@1
293
+ - type: cosine_recall@3
294
+ value: 0.9583333333333334
295
+ name: Cosine Recall@3
296
+ - type: cosine_recall@5
297
+ value: 0.96875
298
+ name: Cosine Recall@5
299
+ - type: cosine_recall@10
300
+ value: 0.9791666666666666
301
+ name: Cosine Recall@10
302
+ - type: cosine_ndcg@10
303
+ value: 0.9011377823848584
304
+ name: Cosine Ndcg@10
305
+ - type: cosine_mrr@10
306
+ value: 0.8746155753968253
307
+ name: Cosine Mrr@10
308
+ - type: cosine_map@100
309
+ value: 0.8757564484126984
310
+ name: Cosine Map@100
311
+ - task:
312
+ type: information-retrieval
313
+ name: Information Retrieval
314
+ dataset:
315
+ name: dim 128
316
+ type: dim_128
317
+ metrics:
318
+ - type: cosine_accuracy@1
319
+ value: 0.7864583333333334
320
+ name: Cosine Accuracy@1
321
+ - type: cosine_accuracy@3
322
+ value: 0.9322916666666666
323
+ name: Cosine Accuracy@3
324
+ - type: cosine_accuracy@5
325
+ value: 0.9635416666666666
326
+ name: Cosine Accuracy@5
327
+ - type: cosine_accuracy@10
328
+ value: 0.9635416666666666
329
+ name: Cosine Accuracy@10
330
+ - type: cosine_precision@1
331
+ value: 0.7864583333333334
332
+ name: Cosine Precision@1
333
+ - type: cosine_precision@3
334
+ value: 0.3107638888888889
335
+ name: Cosine Precision@3
336
+ - type: cosine_precision@5
337
+ value: 0.19270833333333334
338
+ name: Cosine Precision@5
339
+ - type: cosine_precision@10
340
+ value: 0.09635416666666667
341
+ name: Cosine Precision@10
342
+ - type: cosine_recall@1
343
+ value: 0.7864583333333334
344
+ name: Cosine Recall@1
345
+ - type: cosine_recall@3
346
+ value: 0.9322916666666666
347
+ name: Cosine Recall@3
348
+ - type: cosine_recall@5
349
+ value: 0.9635416666666666
350
+ name: Cosine Recall@5
351
+ - type: cosine_recall@10
352
+ value: 0.9635416666666666
353
+ name: Cosine Recall@10
354
+ - type: cosine_ndcg@10
355
+ value: 0.888061438431803
356
+ name: Cosine Ndcg@10
357
+ - type: cosine_mrr@10
358
+ value: 0.8623263888888889
359
+ name: Cosine Mrr@10
360
+ - type: cosine_map@100
361
+ value: 0.8647421480429293
362
+ name: Cosine Map@100
363
+ - task:
364
+ type: information-retrieval
365
+ name: Information Retrieval
366
+ dataset:
367
+ name: dim 64
368
+ type: dim_64
369
+ metrics:
370
+ - type: cosine_accuracy@1
371
+ value: 0.6875
372
+ name: Cosine Accuracy@1
373
+ - type: cosine_accuracy@3
374
+ value: 0.8645833333333334
375
+ name: Cosine Accuracy@3
376
+ - type: cosine_accuracy@5
377
+ value: 0.9270833333333334
378
+ name: Cosine Accuracy@5
379
+ - type: cosine_accuracy@10
380
+ value: 0.96875
381
+ name: Cosine Accuracy@10
382
+ - type: cosine_precision@1
383
+ value: 0.6875
384
+ name: Cosine Precision@1
385
+ - type: cosine_precision@3
386
+ value: 0.2881944444444445
387
+ name: Cosine Precision@3
388
+ - type: cosine_precision@5
389
+ value: 0.18541666666666665
390
+ name: Cosine Precision@5
391
+ - type: cosine_precision@10
392
+ value: 0.09687499999999999
393
+ name: Cosine Precision@10
394
+ - type: cosine_recall@1
395
+ value: 0.6875
396
+ name: Cosine Recall@1
397
+ - type: cosine_recall@3
398
+ value: 0.8645833333333334
399
+ name: Cosine Recall@3
400
+ - type: cosine_recall@5
401
+ value: 0.9270833333333334
402
+ name: Cosine Recall@5
403
+ - type: cosine_recall@10
404
+ value: 0.96875
405
+ name: Cosine Recall@10
406
+ - type: cosine_ndcg@10
407
+ value: 0.8335872598831777
408
+ name: Cosine Ndcg@10
409
+ - type: cosine_mrr@10
410
+ value: 0.7895895337301586
411
+ name: Cosine Mrr@10
412
+ - type: cosine_map@100
413
+ value: 0.7917890681938919
414
+ name: Cosine Map@100
415
+ ---
416
+
417
+ # BGE base Financial Matryoshka
418
+
419
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
420
+
421
+ ## Model Details
422
+
423
+ ### Model Description
424
+ - **Model Type:** Sentence Transformer
425
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
426
+ - **Maximum Sequence Length:** 512 tokens
427
+ - **Output Dimensionality:** 768 tokens
428
+ - **Similarity Function:** Cosine Similarity
429
+ <!-- - **Training Dataset:** Unknown -->
430
+ - **Language:** en
431
+ - **License:** apache-2.0
432
+
433
+ ### Model Sources
434
+
435
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
436
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
437
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
438
+
439
+ ### Full Model Architecture
440
+
441
+ ```
442
+ SentenceTransformer(
443
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
444
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
445
+ (2): Normalize()
446
+ )
447
+ ```
448
+
449
+ ## Usage
450
+
451
+ ### Direct Usage (Sentence Transformers)
452
+
453
+ First install the Sentence Transformers library:
454
+
455
+ ```bash
456
+ pip install -U sentence-transformers
457
+ ```
458
+
459
+ Then you can load this model and run inference.
460
+ ```python
461
+ from sentence_transformers import SentenceTransformer
462
+
463
+ # Download from the 🤗 Hub
464
+ model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-100")
465
+ # Run inference
466
+ sentences = [
467
+ 'Fine-tuning New Knowledge#\nFine-tuning a pre-trained LLM via supervised fine-tuning and RLHF is a common technique for improving certain capabilities of the model like instruction following. Introducing new knowledge at the fine-tuning stage is hard to avoid.\nFine-tuning usually consumes much less compute, making it debatable whether the model can reliably learn new knowledge via small-scale fine-tuning. Gekhman et al. 2024 studied the research question of whether fine-tuning LLMs on new knowledge encourages hallucinations. They found that (1) LLMs learn fine-tuning examples with new knowledge slower than other examples with knowledge consistent with the pre-existing knowledge of the model; (2) Once the examples with new knowledge are eventually learned, they increase the model’s tendency to hallucinate.',
468
+ 'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?',
469
+ 'What is the relationship between the calibration of AI models and the effectiveness of verbalized probabilities when applied to tasks of varying difficulty levels?',
470
+ ]
471
+ embeddings = model.encode(sentences)
472
+ print(embeddings.shape)
473
+ # [3, 768]
474
+
475
+ # Get the similarity scores for the embeddings
476
+ similarities = model.similarity(embeddings, embeddings)
477
+ print(similarities.shape)
478
+ # [3, 3]
479
+ ```
480
+
481
+ <!--
482
+ ### Direct Usage (Transformers)
483
+
484
+ <details><summary>Click to see the direct usage in Transformers</summary>
485
+
486
+ </details>
487
+ -->
488
+
489
+ <!--
490
+ ### Downstream Usage (Sentence Transformers)
491
+
492
+ You can finetune this model on your own dataset.
493
+
494
+ <details><summary>Click to expand</summary>
495
+
496
+ </details>
497
+ -->
498
+
499
+ <!--
500
+ ### Out-of-Scope Use
501
+
502
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
503
+ -->
504
+
505
+ ## Evaluation
506
+
507
+ ### Metrics
508
+
509
+ #### Information Retrieval
510
+ * Dataset: `dim_768`
511
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
512
+
513
+ | Metric | Value |
514
+ |:--------------------|:-----------|
515
+ | cosine_accuracy@1 | 0.8281 |
516
+ | cosine_accuracy@3 | 0.9635 |
517
+ | cosine_accuracy@5 | 0.974 |
518
+ | cosine_accuracy@10 | 0.9948 |
519
+ | cosine_precision@1 | 0.8281 |
520
+ | cosine_precision@3 | 0.3212 |
521
+ | cosine_precision@5 | 0.1948 |
522
+ | cosine_precision@10 | 0.0995 |
523
+ | cosine_recall@1 | 0.8281 |
524
+ | cosine_recall@3 | 0.9635 |
525
+ | cosine_recall@5 | 0.974 |
526
+ | cosine_recall@10 | 0.9948 |
527
+ | cosine_ndcg@10 | 0.922 |
528
+ | cosine_mrr@10 | 0.8977 |
529
+ | **cosine_map@100** | **0.8981** |
530
+
531
+ #### Information Retrieval
532
+ * Dataset: `dim_512`
533
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
534
+
535
+ | Metric | Value |
536
+ |:--------------------|:----------|
537
+ | cosine_accuracy@1 | 0.8021 |
538
+ | cosine_accuracy@3 | 0.9635 |
539
+ | cosine_accuracy@5 | 0.974 |
540
+ | cosine_accuracy@10 | 0.9896 |
541
+ | cosine_precision@1 | 0.8021 |
542
+ | cosine_precision@3 | 0.3212 |
543
+ | cosine_precision@5 | 0.1948 |
544
+ | cosine_precision@10 | 0.099 |
545
+ | cosine_recall@1 | 0.8021 |
546
+ | cosine_recall@3 | 0.9635 |
547
+ | cosine_recall@5 | 0.974 |
548
+ | cosine_recall@10 | 0.9896 |
549
+ | cosine_ndcg@10 | 0.9077 |
550
+ | cosine_mrr@10 | 0.8802 |
551
+ | **cosine_map@100** | **0.881** |
552
+
553
+ #### Information Retrieval
554
+ * Dataset: `dim_256`
555
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
556
+
557
+ | Metric | Value |
558
+ |:--------------------|:-----------|
559
+ | cosine_accuracy@1 | 0.7969 |
560
+ | cosine_accuracy@3 | 0.9583 |
561
+ | cosine_accuracy@5 | 0.9688 |
562
+ | cosine_accuracy@10 | 0.9792 |
563
+ | cosine_precision@1 | 0.7969 |
564
+ | cosine_precision@3 | 0.3194 |
565
+ | cosine_precision@5 | 0.1937 |
566
+ | cosine_precision@10 | 0.0979 |
567
+ | cosine_recall@1 | 0.7969 |
568
+ | cosine_recall@3 | 0.9583 |
569
+ | cosine_recall@5 | 0.9688 |
570
+ | cosine_recall@10 | 0.9792 |
571
+ | cosine_ndcg@10 | 0.9011 |
572
+ | cosine_mrr@10 | 0.8746 |
573
+ | **cosine_map@100** | **0.8758** |
574
+
575
+ #### Information Retrieval
576
+ * Dataset: `dim_128`
577
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
578
+
579
+ | Metric | Value |
580
+ |:--------------------|:-----------|
581
+ | cosine_accuracy@1 | 0.7865 |
582
+ | cosine_accuracy@3 | 0.9323 |
583
+ | cosine_accuracy@5 | 0.9635 |
584
+ | cosine_accuracy@10 | 0.9635 |
585
+ | cosine_precision@1 | 0.7865 |
586
+ | cosine_precision@3 | 0.3108 |
587
+ | cosine_precision@5 | 0.1927 |
588
+ | cosine_precision@10 | 0.0964 |
589
+ | cosine_recall@1 | 0.7865 |
590
+ | cosine_recall@3 | 0.9323 |
591
+ | cosine_recall@5 | 0.9635 |
592
+ | cosine_recall@10 | 0.9635 |
593
+ | cosine_ndcg@10 | 0.8881 |
594
+ | cosine_mrr@10 | 0.8623 |
595
+ | **cosine_map@100** | **0.8647** |
596
+
597
+ #### Information Retrieval
598
+ * Dataset: `dim_64`
599
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
600
+
601
+ | Metric | Value |
602
+ |:--------------------|:-----------|
603
+ | cosine_accuracy@1 | 0.6875 |
604
+ | cosine_accuracy@3 | 0.8646 |
605
+ | cosine_accuracy@5 | 0.9271 |
606
+ | cosine_accuracy@10 | 0.9688 |
607
+ | cosine_precision@1 | 0.6875 |
608
+ | cosine_precision@3 | 0.2882 |
609
+ | cosine_precision@5 | 0.1854 |
610
+ | cosine_precision@10 | 0.0969 |
611
+ | cosine_recall@1 | 0.6875 |
612
+ | cosine_recall@3 | 0.8646 |
613
+ | cosine_recall@5 | 0.9271 |
614
+ | cosine_recall@10 | 0.9688 |
615
+ | cosine_ndcg@10 | 0.8336 |
616
+ | cosine_mrr@10 | 0.7896 |
617
+ | **cosine_map@100** | **0.7918** |
618
+
619
+ <!--
620
+ ## Bias, Risks and Limitations
621
+
622
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
623
+ -->
624
+
625
+ <!--
626
+ ### Recommendations
627
+
628
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
629
+ -->
630
+
631
+ ## Training Details
632
+
633
+ ### Training Hyperparameters
634
+ #### Non-Default Hyperparameters
635
+
636
+ - `eval_strategy`: epoch
637
+ - `per_device_eval_batch_size`: 16
638
+ - `learning_rate`: 2e-05
639
+ - `num_train_epochs`: 5
640
+ - `lr_scheduler_type`: cosine
641
+ - `warmup_ratio`: 0.1
642
+ - `load_best_model_at_end`: True
643
+
644
+ #### All Hyperparameters
645
+ <details><summary>Click to expand</summary>
646
+
647
+ - `overwrite_output_dir`: False
648
+ - `do_predict`: False
649
+ - `eval_strategy`: epoch
650
+ - `prediction_loss_only`: True
651
+ - `per_device_train_batch_size`: 8
652
+ - `per_device_eval_batch_size`: 16
653
+ - `per_gpu_train_batch_size`: None
654
+ - `per_gpu_eval_batch_size`: None
655
+ - `gradient_accumulation_steps`: 1
656
+ - `eval_accumulation_steps`: None
657
+ - `learning_rate`: 2e-05
658
+ - `weight_decay`: 0.0
659
+ - `adam_beta1`: 0.9
660
+ - `adam_beta2`: 0.999
661
+ - `adam_epsilon`: 1e-08
662
+ - `max_grad_norm`: 1.0
663
+ - `num_train_epochs`: 5
664
+ - `max_steps`: -1
665
+ - `lr_scheduler_type`: cosine
666
+ - `lr_scheduler_kwargs`: {}
667
+ - `warmup_ratio`: 0.1
668
+ - `warmup_steps`: 0
669
+ - `log_level`: passive
670
+ - `log_level_replica`: warning
671
+ - `log_on_each_node`: True
672
+ - `logging_nan_inf_filter`: True
673
+ - `save_safetensors`: True
674
+ - `save_on_each_node`: False
675
+ - `save_only_model`: False
676
+ - `restore_callback_states_from_checkpoint`: False
677
+ - `no_cuda`: False
678
+ - `use_cpu`: False
679
+ - `use_mps_device`: False
680
+ - `seed`: 42
681
+ - `data_seed`: None
682
+ - `jit_mode_eval`: False
683
+ - `use_ipex`: False
684
+ - `bf16`: False
685
+ - `fp16`: False
686
+ - `fp16_opt_level`: O1
687
+ - `half_precision_backend`: auto
688
+ - `bf16_full_eval`: False
689
+ - `fp16_full_eval`: False
690
+ - `tf32`: None
691
+ - `local_rank`: 0
692
+ - `ddp_backend`: None
693
+ - `tpu_num_cores`: None
694
+ - `tpu_metrics_debug`: False
695
+ - `debug`: []
696
+ - `dataloader_drop_last`: False
697
+ - `dataloader_num_workers`: 0
698
+ - `dataloader_prefetch_factor`: None
699
+ - `past_index`: -1
700
+ - `disable_tqdm`: False
701
+ - `remove_unused_columns`: True
702
+ - `label_names`: None
703
+ - `load_best_model_at_end`: True
704
+ - `ignore_data_skip`: False
705
+ - `fsdp`: []
706
+ - `fsdp_min_num_params`: 0
707
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
708
+ - `fsdp_transformer_layer_cls_to_wrap`: None
709
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
710
+ - `deepspeed`: None
711
+ - `label_smoothing_factor`: 0.0
712
+ - `optim`: adamw_torch
713
+ - `optim_args`: None
714
+ - `adafactor`: False
715
+ - `group_by_length`: False
716
+ - `length_column_name`: length
717
+ - `ddp_find_unused_parameters`: None
718
+ - `ddp_bucket_cap_mb`: None
719
+ - `ddp_broadcast_buffers`: False
720
+ - `dataloader_pin_memory`: True
721
+ - `dataloader_persistent_workers`: False
722
+ - `skip_memory_metrics`: True
723
+ - `use_legacy_prediction_loop`: False
724
+ - `push_to_hub`: False
725
+ - `resume_from_checkpoint`: None
726
+ - `hub_model_id`: None
727
+ - `hub_strategy`: every_save
728
+ - `hub_private_repo`: False
729
+ - `hub_always_push`: False
730
+ - `gradient_checkpointing`: False
731
+ - `gradient_checkpointing_kwargs`: None
732
+ - `include_inputs_for_metrics`: False
733
+ - `eval_do_concat_batches`: True
734
+ - `fp16_backend`: auto
735
+ - `push_to_hub_model_id`: None
736
+ - `push_to_hub_organization`: None
737
+ - `mp_parameters`:
738
+ - `auto_find_batch_size`: False
739
+ - `full_determinism`: False
740
+ - `torchdynamo`: None
741
+ - `ray_scope`: last
742
+ - `ddp_timeout`: 1800
743
+ - `torch_compile`: False
744
+ - `torch_compile_backend`: None
745
+ - `torch_compile_mode`: None
746
+ - `dispatch_batches`: None
747
+ - `split_batches`: None
748
+ - `include_tokens_per_second`: False
749
+ - `include_num_input_tokens_seen`: False
750
+ - `neftune_noise_alpha`: None
751
+ - `optim_target_modules`: None
752
+ - `batch_eval_metrics`: False
753
+ - `eval_on_start`: False
754
+ - `batch_sampler`: batch_sampler
755
+ - `multi_dataset_batch_sampler`: proportional
756
+
757
+ </details>
758
+
759
+ ### Training Logs
760
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
761
+ |:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
762
+ | 0.3846 | 5 | 5.0472 | - | - | - | - | - |
763
+ | 0.7692 | 10 | 4.0023 | - | - | - | - | - |
764
+ | 1.0 | 13 | - | 0.7939 | 0.8135 | 0.8282 | 0.7207 | 0.8323 |
765
+ | 1.1538 | 15 | 2.3381 | - | - | - | - | - |
766
+ | 1.5385 | 20 | 3.4302 | - | - | - | - | - |
767
+ | 1.9231 | 25 | 2.08 | - | - | - | - | - |
768
+ | 2.0 | 26 | - | 0.8494 | 0.8681 | 0.8781 | 0.7959 | 0.8888 |
769
+ | 2.3077 | 30 | 1.4696 | - | - | - | - | - |
770
+ | 2.6923 | 35 | 1.8153 | - | - | - | - | - |
771
+ | **3.0** | **39** | **-** | **0.8641** | **0.8844** | **0.8924** | **0.7952** | **0.8997** |
772
+ | 3.0769 | 40 | 1.3498 | - | - | - | - | - |
773
+ | 3.4615 | 45 | 0.9135 | - | - | - | - | - |
774
+ | 3.8462 | 50 | 1.3996 | - | - | - | - | - |
775
+ | 4.0 | 52 | - | 0.8647 | 0.8775 | 0.8819 | 0.7896 | 0.8990 |
776
+ | 4.2308 | 55 | 1.1582 | - | - | - | - | - |
777
+ | 4.6154 | 60 | 1.2233 | - | - | - | - | - |
778
+ | 5.0 | 65 | 0.9757 | 0.8647 | 0.8758 | 0.8810 | 0.7918 | 0.8981 |
779
+
780
+ * The bold row denotes the saved checkpoint.
781
+
782
+ ### Framework Versions
783
+ - Python: 3.10.12
784
+ - Sentence Transformers: 3.0.1
785
+ - Transformers: 4.42.4
786
+ - PyTorch: 2.3.1+cu121
787
+ - Accelerate: 0.32.1
788
+ - Datasets: 2.21.0
789
+ - Tokenizers: 0.19.1
790
+
791
+ ## Citation
792
+
793
+ ### BibTeX
794
+
795
+ #### Sentence Transformers
796
+ ```bibtex
797
+ @inproceedings{reimers-2019-sentence-bert,
798
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
799
+ author = "Reimers, Nils and Gurevych, Iryna",
800
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
801
+ month = "11",
802
+ year = "2019",
803
+ publisher = "Association for Computational Linguistics",
804
+ url = "https://arxiv.org/abs/1908.10084",
805
+ }
806
+ ```
807
+
808
+ #### MatryoshkaLoss
809
+ ```bibtex
810
+ @misc{kusupati2024matryoshka,
811
+ title={Matryoshka Representation Learning},
812
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
813
+ year={2024},
814
+ eprint={2205.13147},
815
+ archivePrefix={arXiv},
816
+ primaryClass={cs.LG}
817
+ }
818
+ ```
819
+
820
+ #### MultipleNegativesRankingLoss
821
+ ```bibtex
822
+ @misc{henderson2017efficient,
823
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
824
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
825
+ year={2017},
826
+ eprint={1705.00652},
827
+ archivePrefix={arXiv},
828
+ primaryClass={cs.CL}
829
+ }
830
+ ```
831
+
832
+ <!--
833
+ ## Glossary
834
+
835
+ *Clearly define terms in order to be accessible across audiences.*
836
+ -->
837
+
838
+ <!--
839
+ ## Model Card Authors
840
+
841
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
842
+ -->
843
+
844
+ <!--
845
+ ## Model Card Contact
846
+
847
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
848
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "fine-tuned-models/fine-tuned-matryoshka-100",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b08db95f8a154f5092c7ec86da80412642758784587f17e02cfb6554512be71
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff