--- license: apache-2.0 language: - ja - en library_name: transformers pipeline_tag: text-generation model_type: mistral --- # Swallow-MS-7b-v0.1-ChatVector Japanese "instruction tuned" model made by the technique of [Chat Vector](https://arxiv.org/abs/2310.04799) The weights of this model are obtained not by any instruction tuning but by the following arithmetic: > [Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1) + [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ----------------------- [Chat Vector](https://arxiv.org/abs/2310.04799)の手法を使って、学習済み重みの足し引きのみで[Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1)モデルにチャット形式の対話能力を与えたモデルです。 詳細は[こちらの日本語記事](https://qiita.com/jovyan/items/ee6affa5ee5bdaada6b4)で解説しています。 ## Instruction format The promot format should be the same as [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). E.g. ``` text = "[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen! " "[INST] Do you have mayonnaise recipes? [/INST]" ``` ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "jovyan/Swallow-MS-7b-v0.1-ChatVector" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", ) prompt = "[INST] 東京工業大学のキャンパスの特色を元気よく説明してください。 [/INST]" input_ids = tokenizer.encode( prompt, add_special_tokens=False, return_tensors="pt" ) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=128, temperature=0.99, top_p=0.95, do_sample=True, ) out = tokenizer.decode(tokens[0], skip_special_tokens=True) print(out) ```