Pushing agent that was trained with PPO in the LunarLander-v2 environment
Browse files- PPO-Lunar-Lander-V2.zip +3 -0
- PPO-Lunar-Lander-V2/_stable_baselines3_version +1 -0
- PPO-Lunar-Lander-V2/data +99 -0
- PPO-Lunar-Lander-V2/policy.optimizer.pth +3 -0
- PPO-Lunar-Lander-V2/policy.pth +3 -0
- PPO-Lunar-Lander-V2/pytorch_variables.pth +3 -0
- PPO-Lunar-Lander-V2/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-Lunar-Lander-V2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d9e240c9d0a6cc05b4d245d44c5fc3722d3614749e832cadfa2bbcc79d384b1
|
3 |
+
size 146647
|
PPO-Lunar-Lander-V2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
PPO-Lunar-Lander-V2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbbd5869090>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbbd5869120>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbbd58691b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbbd5869240>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbbd58692d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbbd5869360>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbbd58693f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbbd5869480>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbbd5869510>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbbd58695a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbbd5869630>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbbd58696c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fbbd5862300>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1684584754989628729,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAOOL5UPbq866DXOjGNTTnpMCE+7iYUugAAgD8AAIA/fVFhvkuGSD+OVSK+JbMEv9IcU74lc9g8AAAAAAAAAAD64Tg+6aN8vKttrboUPVA5kcjcvbI09jkAAIA/AACAP003xb2UTKI9nJ6ivBXAGr6Kow27DupPvAAAAAAAAAAAw+RjvvwwpT4CdFM+18aqvgliGz1FRM67AAAAAAAAAADNLCo+A3ZwvOJWqDzyWx673v3Kvaw0ALwAAIA/AACAP+ZY3T3ZCKw/bwAqPz1bxL4IiG896H6TPgAAAAAAAAAAAPREPVzrbrqidBE4RV8QM8prGjobwiq3AACAPwAAgD9mcn69e26wurr8aLOrmnow3ECmObZkxjMAAIA/AACAP8YWfD6hRLa8DDsau08QODlrtSG+5kMSOgAAgD8AAIA/OtqDPok8VT2XSYO+rVqNvr35hrs17Uu9AAAAAAAAAACN4v49wB6gPy6Cej4vwyK/1FQnPoZ6LT4AAAAAAAAAAO1UKD7cKzm8VMOYPHMM+7piErO9y1HNuwAAgD8AAIA/ZnygvA6Mzj3AQ3c8HWh0vqf4UD0daTk9AAAAAAAAAACa7bo7j74kui7bCTi37n6yPc+Pu9o4ILcAAIA/AACAP81w+r3X9267xk0AvdVhM77jWx+7Ss1APQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG0HkgfU4KMAWyUS9uMAXSUR0Cei64nndO7dX2UKGgGR0By22wGGEf1aAdL0mgIR0Cei72PT5O8dX2UKGgGR0BxktG3F1jiaAdNWwFoCEdAnovL1yvLYHV9lChoBkdAb4aIHkcS5GgHS9BoCEdAno4i/bj943V9lChoBkdAceORtP557mgHS+NoCEdAno6Sj1wo9nV9lChoBkdAcLYqMWGh3GgHS9FoCEdAno6PFirksHV9lChoBkdAcUIBas6q82gHS+1oCEdAno7NAcDKYHV9lChoBkdAUxvLHMlkY2gHS55oCEdAno7j4QBgeHV9lChoBkdAb+YNnXd0rGgHS81oCEdAnpKvwEyLynV9lChoBkdAbuwMCtA9m2gHS7poCEdAnpMUOAiFCnV9lChoBkdAYxVNRm9QGmgHTegDaAhHQJ6TbFm4Ajp1fZQoaAZHQHJbGbCrLhdoB0vSaAhHQJ6TnvE0iyJ1fZQoaAZHQHKYTwc5sCVoB0v7aAhHQJ6UBkupS751fZQoaAZHQHF5i2Yv38JoB0vNaAhHQJ6UsYgq3E11fZQoaAZHQHHggiu+yqxoB0vpaAhHQJ6VjoKUmlZ1fZQoaAZHQHIvhArxy4poB0u/aAhHQJ6WVRzijtZ1fZQoaAZHQG8xNuUD+zdoB0vPaAhHQJ6WpuDSPU91fZQoaAZHQHIUh9Tgl4VoB0vbaAhHQJ6XANYr8SB1fZQoaAZHQHGYlJpWV/toB0vfaAhHQJ6XTd/J/5N1fZQoaAZHQHJvlxOtW+5oB00QAWgIR0CemIDaoMrmdX2UKGgGR0BwhCmCROk+aAdLsGgIR0CemK5nUUfxdX2UKGgGR0BwPy+UQkHEaAdLyGgIR0CemSP2PDHfdX2UKGgGR0Byk34h2W6caAdL32gIR0CemnvS+g14dX2UKGgGR0Bxz/hzeXRgaAdLtmgIR0Cem224d6sydX2UKGgGR0By4VbfP5YYaAdNAgFoCEdAnpvaxoqTbHV9lChoBkdAc6L2phnanWgHTQABaAhHQJ6cOnUDuBt1fZQoaAZHQHHgjlT3qRloB0vuaAhHQJ6cZMfzSTh1fZQoaAZHQHBcJQgs9SxoB0vYaAhHQJ6dUCKaXrt1fZQoaAZHQHFbtVWCEpRoB0vmaAhHQJ6eFgy/KyR1fZQoaAZHQG4+LZ8KG+NoB0vcaAhHQJ6edC3PRiR1fZQoaAZHQHE7Zftx+8ZoB0vqaAhHQJ6en1TR6Wx1fZQoaAZHQHKaWzjWCmNoB0vSaAhHQJ6fXJIUahp1fZQoaAZHQHCVY0ygwoNoB0vOaAhHQJ6fbX4CZF51fZQoaAZHQHIrS8e0XxhoB0vCaAhHQJ6g9bC79Q51fZQoaAZHQHAMPJvHcUNoB0v3aAhHQJ6hV2NedCp1fZQoaAZHQHMRGfGuLaVoB0u1aAhHQJ6heb/ffoB1fZQoaAZHQHGYmL9/BnBoB0vFaAhHQJ6i2SV4X411fZQoaAZHQHInLZJ04ipoB0vMaAhHQJ6kTXDm8ul1fZQoaAZHQHG2Pi5uqFRoB0u+aAhHQJ6kpTQ3PzF1fZQoaAZHQHAlt5MURFtoB0uyaAhHQJ6kwjSofjl1fZQoaAZHQHAOCJKraM9oB0u9aAhHQJ6l9p22Xsx1fZQoaAZHQGEbUSh8IAxoB03oA2gIR0Cepi30wrUcdX2UKGgGR0BwzOX4TK1YaAdLwWgIR0CepjOGTLW7dX2UKGgGR0Bum9fzBhx6aAdL4GgIR0CepkJ1aGHpdX2UKGgGR0BxPM8gZCOWaAdNNQFoCEdAnqZ9xVAAyXV9lChoBkdAcjWidJ8OTmgHS8doCEdAnqhlFlTWG3V9lChoBkdAYyhxMnJDE2gHTegDaAhHQJ6pHIzWPLh1fZQoaAZHQGFo+izsyBVoB03oA2gIR0CeqS2i+L3sdX2UKGgGR0BvID0+TvAoaAdL4GgIR0CeqSzaK1ohdX2UKGgGR0ByPJC0F8ohaAdL72gIR0CeqUlC1JDmdX2UKGgGR0BvzLO/tY0VaAdLwWgIR0CeqYqlP8AJdX2UKGgGR0Bxebxy4nWraAdL42gIR0CerBZjQRf4dX2UKGgGR0BvBaz3RG+caAdL1mgIR0CerOM23rledX2UKGgGR0ByAIGIKtxNaAdNBQFoCEdAnqzp4bCJoHV9lChoBkdAbayC5Etuk2gHS8toCEdAnqz7hR64UnV9lChoBkdAcPp2bobGWGgHS99oCEdAnq1ZtBOYY3V9lChoBkdAcx6ITGo73mgHS+RoCEdAnq2O+Eh7mnV9lChoBkdAcCxdzXBgu2gHS8toCEdAnq7jQqqfe3V9lChoBkdAZDNCN0eU6mgHTegDaAhHQJ6vDKuB+Wp1fZQoaAZHQHE/7iyY5T9oB0u+aAhHQJ6vItGus911fZQoaAZHQHBSXuNPxhFoB0vCaAhHQJ6va77Kq4p1fZQoaAZHQG/eqRdQfp5oB0vtaAhHQJ6wnj7yhBZ1fZQoaAZHQHIWYwyqMm5oB0v6aAhHQJ6xA0k4WDZ1fZQoaAZHQHC1XbAUL2JoB0vLaAhHQJ6zfZdv8651fZQoaAZHQG9Klev6j35oB0u7aAhHQJ6zsbZOBUd1fZQoaAZHQG4HBXr+o99oB0vVaAhHQJ6z84Qz1sd1fZQoaAZHQHHWzI3irDJoB0vcaAhHQJ60HBhx5s11fZQoaAZHQHLcHWOIZZVoB0vzaAhHQJ61XK0UoKF1fZQoaAZHQG/45wfhddFoB0vIaAhHQJ61tbt7a7F1fZQoaAZHQG/Fd56dDploB0vlaAhHQJ62p9Tgl4V1fZQoaAZHQHJFL9ycTaloB0vqaAhHQJ63Th/Aj6h1fZQoaAZHQG8+mthd+odoB0u+aAhHQJ63nIgeRxN1fZQoaAZHQHL4n6InBtVoB00FAWgIR0Cet7ZH/cWTdX2UKGgGR0Bu++M+/xlQaAdLuWgIR0CeumWGyon8dX2UKGgGR0BvXG0LMLWqaAdL0GgIR0CevCaJhvzfdX2UKGgGR0BwcJ8eCCjDaAdL3mgIR0CevKyprDZUdX2UKGgGR0BzAgCmuTzNaAdLxmgIR0CevaL7XQMQdX2UKGgGR0BxAtBZ6lchaAdLv2gIR0CevdCQ9zOpdX2UKGgGR0BviU7hegL7aAdLvGgIR0CewJmk30f6dX2UKGgGR0BhDfCj1wo9aAdN6ANoCEdAnsCY0uUUwnV9lChoBkdAcnycBEKE4GgHS9doCEdAnsC2JSBK+XV9lChoBkdAcovVinYQKGgHS+doCEdAnsMHryDqW3V9lChoBkdAccDugHu7YmgHS6toCEdAnseX4sVclnV9lChoBkdAcQy6V+qioWgHTT8BaAhHQJ7H2hL5AQh1fZQoaAZHQHGvAVsUIs1oB0uvaAhHQJ7IDxXnyNJ1fZQoaAZHQG8SzpPhybRoB0vEaAhHQJ7IHVsk6cR1fZQoaAZHQHGGld5Y5ktoB0vjaAhHQJ7JY+W4Vh11fZQoaAZHQHL9RY3eenRoB0vFaAhHQJ7MljjJdSl1fZQoaAZHQHFTy3gDRtxoB01FAWgIR0CezWFTNt65dX2UKGgGR0BwvLOpsGgSaAdL6GgIR0CezrEWqLjxdX2UKGgGR0BzIlv3rUsnaAdL6mgIR0CeztPO6d1/dX2UKGgGR0BjS1glWwNcaAdN6ANoCEdAns98BIWgvnV9lChoBkdAcH1re67NCGgHS+FoCEdAntCkutfXw3V9lChoBkdAaApdHlOoHmgHTegDaAhHQJ7RH212JSB1fZQoaAZHQD5Ao+fRNRFoB0uRaAhHQJ7Rb3/Pw/h1fZQoaAZHQHHieii7Ci1oB0u8aAhHQJ7R5nL7oB91fZQoaAZHQG346CcwxnFoB0vHaAhHQJ7SZinYQJ51fZQoaAZHQGMAkVN5+phoB03oA2gIR0Ce1KvgWJrMdX2UKGgGR0BuFX1ct5D7aAdLyGgIR0Ce1Sb5/LDAdX2UKGgGR0BvK9TP0I1MaAdL12gIR0Ce1iq3VkMDdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
PPO-Lunar-Lander-V2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:793e9af41e603b223b442010f643eb6481b6ab4de2bf6b95009b0479efab426a
|
3 |
+
size 87929
|
PPO-Lunar-Lander-V2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f21f8797e16072592bdf1c8382dfa15e4e4d88730c757bc7b2eab964347f57a6
|
3 |
+
size 43329
|
PPO-Lunar-Lander-V2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-Lunar-Lander-V2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.15 +/- 17.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbbd5869090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbbd5869120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbbd58691b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbbd5869240>", "_build": "<function ActorCriticPolicy._build at 0x7fbbd58692d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbbd5869360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbbd58693f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbbd5869480>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbbd5869510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbbd58695a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbbd5869630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbbd58696c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbbd5862300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684584754989628729, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAOOL5UPbq866DXOjGNTTnpMCE+7iYUugAAgD8AAIA/fVFhvkuGSD+OVSK+JbMEv9IcU74lc9g8AAAAAAAAAAD64Tg+6aN8vKttrboUPVA5kcjcvbI09jkAAIA/AACAP003xb2UTKI9nJ6ivBXAGr6Kow27DupPvAAAAAAAAAAAw+RjvvwwpT4CdFM+18aqvgliGz1FRM67AAAAAAAAAADNLCo+A3ZwvOJWqDzyWx673v3Kvaw0ALwAAIA/AACAP+ZY3T3ZCKw/bwAqPz1bxL4IiG896H6TPgAAAAAAAAAAAPREPVzrbrqidBE4RV8QM8prGjobwiq3AACAPwAAgD9mcn69e26wurr8aLOrmnow3ECmObZkxjMAAIA/AACAP8YWfD6hRLa8DDsau08QODlrtSG+5kMSOgAAgD8AAIA/OtqDPok8VT2XSYO+rVqNvr35hrs17Uu9AAAAAAAAAACN4v49wB6gPy6Cej4vwyK/1FQnPoZ6LT4AAAAAAAAAAO1UKD7cKzm8VMOYPHMM+7piErO9y1HNuwAAgD8AAIA/ZnygvA6Mzj3AQ3c8HWh0vqf4UD0daTk9AAAAAAAAAACa7bo7j74kui7bCTi37n6yPc+Pu9o4ILcAAIA/AACAP81w+r3X9267xk0AvdVhM77jWx+7Ss1APQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG0HkgfU4KMAWyUS9uMAXSUR0Cei64nndO7dX2UKGgGR0By22wGGEf1aAdL0mgIR0Cei72PT5O8dX2UKGgGR0BxktG3F1jiaAdNWwFoCEdAnovL1yvLYHV9lChoBkdAb4aIHkcS5GgHS9BoCEdAno4i/bj943V9lChoBkdAceORtP557mgHS+NoCEdAno6Sj1wo9nV9lChoBkdAcLYqMWGh3GgHS9FoCEdAno6PFirksHV9lChoBkdAcUIBas6q82gHS+1oCEdAno7NAcDKYHV9lChoBkdAUxvLHMlkY2gHS55oCEdAno7j4QBgeHV9lChoBkdAb+YNnXd0rGgHS81oCEdAnpKvwEyLynV9lChoBkdAbuwMCtA9m2gHS7poCEdAnpMUOAiFCnV9lChoBkdAYxVNRm9QGmgHTegDaAhHQJ6TbFm4Ajp1fZQoaAZHQHJbGbCrLhdoB0vSaAhHQJ6TnvE0iyJ1fZQoaAZHQHKYTwc5sCVoB0v7aAhHQJ6UBkupS751fZQoaAZHQHF5i2Yv38JoB0vNaAhHQJ6UsYgq3E11fZQoaAZHQHHggiu+yqxoB0vpaAhHQJ6VjoKUmlZ1fZQoaAZHQHIvhArxy4poB0u/aAhHQJ6WVRzijtZ1fZQoaAZHQG8xNuUD+zdoB0vPaAhHQJ6WpuDSPU91fZQoaAZHQHIUh9Tgl4VoB0vbaAhHQJ6XANYr8SB1fZQoaAZHQHGYlJpWV/toB0vfaAhHQJ6XTd/J/5N1fZQoaAZHQHJvlxOtW+5oB00QAWgIR0CemIDaoMrmdX2UKGgGR0BwhCmCROk+aAdLsGgIR0CemK5nUUfxdX2UKGgGR0BwPy+UQkHEaAdLyGgIR0CemSP2PDHfdX2UKGgGR0Byk34h2W6caAdL32gIR0CemnvS+g14dX2UKGgGR0Bxz/hzeXRgaAdLtmgIR0Cem224d6sydX2UKGgGR0By4VbfP5YYaAdNAgFoCEdAnpvaxoqTbHV9lChoBkdAc6L2phnanWgHTQABaAhHQJ6cOnUDuBt1fZQoaAZHQHHgjlT3qRloB0vuaAhHQJ6cZMfzSTh1fZQoaAZHQHBcJQgs9SxoB0vYaAhHQJ6dUCKaXrt1fZQoaAZHQHFbtVWCEpRoB0vmaAhHQJ6eFgy/KyR1fZQoaAZHQG4+LZ8KG+NoB0vcaAhHQJ6edC3PRiR1fZQoaAZHQHE7Zftx+8ZoB0vqaAhHQJ6en1TR6Wx1fZQoaAZHQHKaWzjWCmNoB0vSaAhHQJ6fXJIUahp1fZQoaAZHQHCVY0ygwoNoB0vOaAhHQJ6fbX4CZF51fZQoaAZHQHIrS8e0XxhoB0vCaAhHQJ6g9bC79Q51fZQoaAZHQHAMPJvHcUNoB0v3aAhHQJ6hV2NedCp1fZQoaAZHQHMRGfGuLaVoB0u1aAhHQJ6heb/ffoB1fZQoaAZHQHGYmL9/BnBoB0vFaAhHQJ6i2SV4X411fZQoaAZHQHInLZJ04ipoB0vMaAhHQJ6kTXDm8ul1fZQoaAZHQHG2Pi5uqFRoB0u+aAhHQJ6kpTQ3PzF1fZQoaAZHQHAlt5MURFtoB0uyaAhHQJ6kwjSofjl1fZQoaAZHQHAOCJKraM9oB0u9aAhHQJ6l9p22Xsx1fZQoaAZHQGEbUSh8IAxoB03oA2gIR0Cepi30wrUcdX2UKGgGR0BwzOX4TK1YaAdLwWgIR0CepjOGTLW7dX2UKGgGR0Bum9fzBhx6aAdL4GgIR0CepkJ1aGHpdX2UKGgGR0BxPM8gZCOWaAdNNQFoCEdAnqZ9xVAAyXV9lChoBkdAcjWidJ8OTmgHS8doCEdAnqhlFlTWG3V9lChoBkdAYyhxMnJDE2gHTegDaAhHQJ6pHIzWPLh1fZQoaAZHQGFo+izsyBVoB03oA2gIR0CeqS2i+L3sdX2UKGgGR0BvID0+TvAoaAdL4GgIR0CeqSzaK1ohdX2UKGgGR0ByPJC0F8ohaAdL72gIR0CeqUlC1JDmdX2UKGgGR0BvzLO/tY0VaAdLwWgIR0CeqYqlP8AJdX2UKGgGR0Bxebxy4nWraAdL42gIR0CerBZjQRf4dX2UKGgGR0BvBaz3RG+caAdL1mgIR0CerOM23rledX2UKGgGR0ByAIGIKtxNaAdNBQFoCEdAnqzp4bCJoHV9lChoBkdAbayC5Etuk2gHS8toCEdAnqz7hR64UnV9lChoBkdAcPp2bobGWGgHS99oCEdAnq1ZtBOYY3V9lChoBkdAcx6ITGo73mgHS+RoCEdAnq2O+Eh7mnV9lChoBkdAcCxdzXBgu2gHS8toCEdAnq7jQqqfe3V9lChoBkdAZDNCN0eU6mgHTegDaAhHQJ6vDKuB+Wp1fZQoaAZHQHE/7iyY5T9oB0u+aAhHQJ6vItGus911fZQoaAZHQHBSXuNPxhFoB0vCaAhHQJ6va77Kq4p1fZQoaAZHQG/eqRdQfp5oB0vtaAhHQJ6wnj7yhBZ1fZQoaAZHQHIWYwyqMm5oB0v6aAhHQJ6xA0k4WDZ1fZQoaAZHQHC1XbAUL2JoB0vLaAhHQJ6zfZdv8651fZQoaAZHQG9Klev6j35oB0u7aAhHQJ6zsbZOBUd1fZQoaAZHQG4HBXr+o99oB0vVaAhHQJ6z84Qz1sd1fZQoaAZHQHHWzI3irDJoB0vcaAhHQJ60HBhx5s11fZQoaAZHQHLcHWOIZZVoB0vzaAhHQJ61XK0UoKF1fZQoaAZHQG/45wfhddFoB0vIaAhHQJ61tbt7a7F1fZQoaAZHQG/Fd56dDploB0vlaAhHQJ62p9Tgl4V1fZQoaAZHQHJFL9ycTaloB0vqaAhHQJ63Th/Aj6h1fZQoaAZHQG8+mthd+odoB0u+aAhHQJ63nIgeRxN1fZQoaAZHQHL4n6InBtVoB00FAWgIR0Cet7ZH/cWTdX2UKGgGR0Bu++M+/xlQaAdLuWgIR0CeumWGyon8dX2UKGgGR0BvXG0LMLWqaAdL0GgIR0CevCaJhvzfdX2UKGgGR0BwcJ8eCCjDaAdL3mgIR0CevKyprDZUdX2UKGgGR0BzAgCmuTzNaAdLxmgIR0CevaL7XQMQdX2UKGgGR0BxAtBZ6lchaAdLv2gIR0CevdCQ9zOpdX2UKGgGR0BviU7hegL7aAdLvGgIR0CewJmk30f6dX2UKGgGR0BhDfCj1wo9aAdN6ANoCEdAnsCY0uUUwnV9lChoBkdAcnycBEKE4GgHS9doCEdAnsC2JSBK+XV9lChoBkdAcovVinYQKGgHS+doCEdAnsMHryDqW3V9lChoBkdAccDugHu7YmgHS6toCEdAnseX4sVclnV9lChoBkdAcQy6V+qioWgHTT8BaAhHQJ7H2hL5AQh1fZQoaAZHQHGvAVsUIs1oB0uvaAhHQJ7IDxXnyNJ1fZQoaAZHQG8SzpPhybRoB0vEaAhHQJ7IHVsk6cR1fZQoaAZHQHGGld5Y5ktoB0vjaAhHQJ7JY+W4Vh11fZQoaAZHQHL9RY3eenRoB0vFaAhHQJ7MljjJdSl1fZQoaAZHQHFTy3gDRtxoB01FAWgIR0CezWFTNt65dX2UKGgGR0BwvLOpsGgSaAdL6GgIR0CezrEWqLjxdX2UKGgGR0BzIlv3rUsnaAdL6mgIR0CeztPO6d1/dX2UKGgGR0BjS1glWwNcaAdN6ANoCEdAns98BIWgvnV9lChoBkdAcH1re67NCGgHS+FoCEdAntCkutfXw3V9lChoBkdAaApdHlOoHmgHTegDaAhHQJ7RH212JSB1fZQoaAZHQD5Ao+fRNRFoB0uRaAhHQJ7Rb3/Pw/h1fZQoaAZHQHHieii7Ci1oB0u8aAhHQJ7R5nL7oB91fZQoaAZHQG346CcwxnFoB0vHaAhHQJ7SZinYQJ51fZQoaAZHQGMAkVN5+phoB03oA2gIR0Ce1KvgWJrMdX2UKGgGR0BuFX1ct5D7aAdLyGgIR0Ce1Sb5/LDAdX2UKGgGR0BvK9TP0I1MaAdL12gIR0Ce1iq3VkMDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (165 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.147389043737, "std_reward": 17.05484217280618, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T14:01:50.543033"}
|