File size: 2,410 Bytes
d0088c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mistral-journal-finetune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-journal-finetune
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6324
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9438 | 0.03 | 25 | 1.2268 |
| 1.1449 | 0.06 | 50 | 1.1088 |
| 1.1742 | 0.09 | 75 | 1.0455 |
| 1.0987 | 0.12 | 100 | 0.9922 |
| 1.0298 | 0.15 | 125 | 0.9476 |
| 0.9422 | 0.18 | 150 | 0.9082 |
| 0.934 | 0.21 | 175 | 0.8789 |
| 0.8254 | 0.24 | 200 | 0.8560 |
| 1.045 | 0.27 | 225 | 0.8217 |
| 0.9614 | 0.3 | 250 | 0.7783 |
| 0.8001 | 0.33 | 275 | 0.7525 |
| 0.8299 | 0.36 | 300 | 0.7238 |
| 0.7427 | 0.39 | 325 | 0.7087 |
| 0.7323 | 0.42 | 350 | 0.6973 |
| 0.7501 | 0.45 | 375 | 0.6794 |
| 0.819 | 0.48 | 400 | 0.6692 |
| 0.7871 | 0.51 | 425 | 0.6544 |
| 0.7604 | 0.54 | 450 | 0.6431 |
| 0.6955 | 0.57 | 475 | 0.6356 |
| 0.6919 | 0.6 | 500 | 0.6324 |
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0 |