File size: 7,034 Bytes
c1e6cb6
 
e453b4f
 
 
 
 
 
 
6e68e4c
 
 
c1e6cb6
 
6e68e4c
c1e6cb6
6e68e4c
e453b4f
b6521e7
6e68e4c
c1e6cb6
66af3ba
ca46218
 
f12fd52
c1e6cb6
c13ba57
1156cbf
f74ce02
1156cbf
6e68e4c
fa3e742
 
 
c13ba57
69b152f
 
 
 
 
 
fa3e742
 
f12fd52
6e68e4c
3f9d9ea
1156cbf
6e68e4c
f12fd52
 
a9859a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12fd52
 
a9859a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12fd52
 
a9859a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12fd52
6e68e4c
88f25e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e68e4c
 
c403df6
6e68e4c
f12fd52
6e68e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1e6cb6
e453b4f
c1e6cb6
f12fd52
 
c1e6cb6
e453b4f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
library_name: transformers
license: mit
language:
- fr
- en
tags:
- french
- chocolatine
datasets:
- jpacifico/french-orca-dpo-pairs-revised
pipeline_tag: text-generation
---

### Chocolatine-3B-Instruct-DPO-Revised  

DPO fine-tuned of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) (3.82B params)  
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.  
Training in French also improves the model in English, surpassing the performances of its base model.  
Window context = 4k tokens  

Quantized 4-bit and 8-bit versions are available (see below)  
A larger version Chocolatine-14B is also available in its latest [version-1.2](https://huggingface.co/jpacifico/Chocolatine-14B-Instruct-DPO-v1.2)

### Benchmarks

Chocolatine is the best-performing 3B model on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (august 2024)   
[Update 2024-08-22] Chocolatine-3B also outperforms Microsoft's new model Phi-3.5-mini-instruct on the average benchmarks of the 3B category.  

![image/png](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Assets/openllm_chocolatine_3B_22082024.png?raw=false)  


|      Metric       |Value|
|-------------------|----:|
|**Avg.**               |**27.63**|
|IFEval     |56.23|
|BBH        |37.16|
|MATH Lvl 5 |14.5|
|GPQA       |9.62|
|MuSR       |15.1|
|MMLU-PRO   |33.21|


### MT-Bench-French

Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as LLM-judge.   
Notably, this latest version of the Chocolatine-3B model is approaching the performance of Phi-3-Medium (14B) in French.

```
########## First turn ##########
                                                      score
model                                         turn         
gpt-4o-mini                                   1     9.28750
Chocolatine-14B-Instruct-DPO-v1.2             1     8.61250
Phi-3-medium-4k-instruct                      1     8.22500
gpt-3.5-turbo                                 1     8.13750
Chocolatine-3B-Instruct-DPO-Revised           1     7.98750
Daredevil-8B                                  1     7.88750
NeuralDaredevil-8B-abliterated                1     7.62500
Phi-3-mini-4k-instruct                        1     7.21250
Meta-Llama-3.1-8B-Instruct                    1     7.05000
vigostral-7b-chat                             1     6.78750
Mistral-7B-Instruct-v0.3                      1     6.75000
gemma-2-2b-it                                 1     6.45000
French-Alpaca-7B-Instruct_beta                1     5.68750
vigogne-2-7b-chat                             1     5.66250

########## Second turn ##########
                                                       score
model                                         turn          
gpt-4o-mini                                   2     8.912500
Chocolatine-14B-Instruct-DPO-v1.2             2     8.337500
Chocolatine-3B-Instruct-DPO-Revised           2     7.937500
Phi-3-medium-4k-instruct                      2     7.750000
gpt-3.5-turbo                                 2     7.679167
NeuralDaredevil-8B-abliterated                2     7.125000
Daredevil-8B                                  2     7.087500
Meta-Llama-3.1-8B-Instruct                    2     6.787500
Mistral-7B-Instruct-v0.3                      2     6.500000
Phi-3-mini-4k-instruct                        2     6.487500
vigostral-7b-chat                             2     6.162500
gemma-2-2b-it                                 2     6.100000
French-Alpaca-7B-Instruct_beta                2     5.487395
vigogne-2-7b-chat                             2     2.775000

########## Average ##########
                                                  score
model                                                  
gpt-4o-mini                                    9.100000
Chocolatine-14B-Instruct-DPO-v1.2              8.475000
Phi-3-medium-4k-instruct                       7.987500
Chocolatine-3B-Instruct-DPO-Revised            7.962500
gpt-3.5-turbo                                  7.908333
Daredevil-8B                                   7.487500
NeuralDaredevil-8B-abliterated                 7.375000
Meta-Llama-3.1-8B-Instruct                     6.918750
Phi-3-mini-4k-instruct                         6.850000
Mistral-7B-Instruct-v0.3                       6.625000
vigostral-7b-chat                              6.475000
gemma-2-2b-it                                  6.275000
French-Alpaca-7B-Instruct_beta                 5.587866
vigogne-2-7b-chat                              4.218750
```


### Quantized versions

* **4-bit quantized version** is available here : [jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF)

* **8-bit quantized version** also available here : [jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q8_0-GGUF](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q8_0-GGUF)

* **Ollama**: [jpacifico/chocolatine-3b](https://ollama.com/jpacifico/chocolatine-3b)

```bash
ollama run jpacifico/chocolatine-3b
```

Ollama *Modelfile* example :

```bash
FROM ./chocolatine-3b-instruct-dpo-revised-q4_k_m.gguf
TEMPLATE """{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>
"""
PARAMETER stop """{"stop": ["<|end|>","<|user|>","<|assistant|>"]}"""
SYSTEM """You are a friendly assistant called Chocolatine."""
```

### Usage

You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb) 

You can also run Chocolatine using the following code:

```python
import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])
```

### Limitations

The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.  
It does not have any moderation mechanism.  

- **Developed by:** Jonathan Pacifico, 2024
- **Model type:** LLM 
- **Language(s) (NLP):** French, English
- **License:** MIT