jpata commited on
Commit
560e2d0
·
1 Parent(s): 00e6b15

added README

Browse files
Files changed (1) hide show
  1. clic/clusters/v1.6/README.md +113 -0
clic/clusters/v1.6/README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card for mlpf-clic-clusters-v1.6
2
+
3
+ This model reconstructs particles in a detector, based on the tracks and calorimeter clusters recorded by the detector.
4
+
5
+ ## Model Details
6
+
7
+ ### Model Description
8
+
9
+ <!-- Provide a longer summary of what this model is. -->
10
+
11
+ {{ model_description | default("", true) }}
12
+
13
+ - **Developed by:** Joosep Pata, Eric Wulff, Farouk Mokhtar, Mengke Zhang, David Southwick, Maria Girone, David Southwick
14
+ - **Model type:** graph neural network with learnable structure in locality-sensitive hashing bins
15
+ - **License:** Apache License
16
+
17
+ ### Model Sources
18
+
19
+ <!-- Provide the basic links for the model. -->
20
+
21
+ - **Repository:** https://github.com/jpata/particleflow/releases/tag/v1.6
22
+ - **Paper:** https://doi.org/10.48550/arXiv.2309.06782
23
+
24
+ ## Uses
25
+
26
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
27
+
28
+ ### Direct Use
29
+
30
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
31
+
32
+ This model may be used to study the physics and computational performance on ML-based reconstruction in simulation.
33
+
34
+ ### Out-of-Scope Use
35
+
36
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
37
+
38
+ This model is not intended for physics measurements on real data.
39
+
40
+ ## Bias, Risks, and Limitations
41
+
42
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
43
+
44
+ The model has only been trained on simulation data and has not been validated against real data.
45
+
46
+ ## How to Get Started with the Model
47
+
48
+ Use the code below to get started with the model.
49
+
50
+ ```
51
+ git clone https://github.com/jpata/particleflow/releases/tag/v1.6
52
+ cd particleflow
53
+
54
+ #Download the software image
55
+ wget https://hep.kbfi.ee/~joosep/tf-2.14.0.simg
56
+
57
+ #Download the checkpoint
58
+ wget https://huggingface.co/jpata/particleflow/resolve/clic_clusters_v1.6/weights-96-5.346523.hdf5
59
+ wget https://huggingface.co/jpata/particleflow/resolve/clic_clusters_v1.6/opt-96-5.346523.pkl
60
+
61
+ #Launch a shell in the software image
62
+ apptainer shell --nv tf-2.14.0.simg
63
+
64
+ #Continue the training from a checkpoint
65
+ python3 mlpf/pipeline.py train --config parameters/clic.yaml --weights weights-96-5.346523.hdf5 --batch-multiplier 0.5
66
+
67
+ #Run the evaluation for a given training directory, loading the best weight file in the directory
68
+ python3 mlpf/pipeline.py evaluate --train-dir experiments/clic-REPLACEME
69
+ ```
70
+
71
+ ## Training Details
72
+
73
+ ### Training Data
74
+
75
+ Trained on the following dataset:
76
+ Pata, J., Wulff, E., Duarte, J., Mokhtar, F., Zhang, M., Girone, M., & Southwick, D. (2023). Simulated datasets for detector and particle flow reconstruction: CLIC detector, machine learning format (v1.5.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8409592
77
+
78
+ ### Training Procedure
79
+
80
+ ```
81
+ python3 mlpf/pipeline.py train --config parameters/clic.yaml
82
+ ```
83
+
84
+ ## Evaluation
85
+
86
+ ```
87
+ python3 mlpf/pipeline.py evaluate --train-dir experiments/clic-REPLACEME
88
+ ```
89
+
90
+ ## Citation
91
+
92
+ **BibTeX:**
93
+
94
+ ```
95
+ @misc{pata2023scalable,
96
+ title={Scalable neural network models and terascale datasets for particle-flow reconstruction},
97
+ author={Joosep Pata and Eric Wulff and Farouk Mokhtar and David Southwick and Mengke Zhang and Maria Girone and Javier Duarte},
98
+ year={2023},
99
+ eprint={2309.06782},
100
+ archivePrefix={arXiv},
101
+ primaryClass={physics.data-an}
102
+ }
103
+ ```
104
+ ## Glossary
105
+
106
+ PF - particle flow reconstruction
107
+
108
+ ## Model Card Contact
109
+
110
+ Joosep Pata, [email protected]
111
+
112
+
113
+