File size: 1,998 Bytes
4b2b1b5
 
 
 
 
 
 
741346b
4b2b1b5
 
 
 
741346b
4b2b1b5
 
 
0be1fc0
 
741346b
 
4b2b1b5
 
 
0be1fc0
4b2b1b5
 
 
741346b
4b2b1b5
 
 
7661a5f
 
741346b
 
 
 
4b2b1b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7661a5f
 
 
 
4b2b1b5
 
 
 
7661a5f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: ''
tags:
- generated_from_trainer
model-index:
- name: retnet-mini-shakespeare
  results: []
pipeline_tag: text-generation
---

# retnet-mini-shakespeare

This model was trained from scratch on "tinyshakespeare" text file.

## Model description

A tiny model similar to jploski/falcon-mini-shakespeare, to demonstrate training and recurrent inference using a retentive network (https://arxiv.org/pdf/2307.08621.pdf).
The code utilizes Sehyun Choi's implementation of retentive network (https://github.com/syncdoth/RetNet) with configuration parameters changed to make it a very tiny model.

- **License:** Apache 2.0.

## Intended uses & limitations

Intended to demonstrate training and (recurrent O(1)) inference using a retentive network

## Training and evaluation data

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

## Training procedure

Note: updated on 2023-11-10 to work with the current version of syncdoth/RetNet.

Just used the single tinyshakespeare text file as both the training and validation set (split up into paragraphs). See:

https://colab.research.google.com/drive/1wZnM7FCe4TsQpoamJ7NDAuQfA3DYiwHi?usp=sharing

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6853        | 10.0  | 370  | 3.4459          |
| 2.1973        | 20.0  | 740  | 2.0213          |
| 1.3819        | 30.0  | 1110 | 1.3017          |
| 1.1658        | 40.0  | 1480 | 1.1566          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1