jpodivin commited on
Commit
b08db0b
1 Parent(s): d533e60

Model save

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: openmmlab/upernet-swin-small
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: upernet-swin-small-finetuned
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # upernet-swin-small-finetuned
15
+
16
+ This model is a fine-tuned version of [openmmlab/upernet-swin-small](https://huggingface.co/openmmlab/upernet-swin-small) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.2914
19
+ - Mean Iou: 0.4182
20
+ - Mean Accuracy: 0.5282
21
+ - Overall Accuracy: 0.7341
22
+ - Accuracy Void: nan
23
+ - Accuracy Fruit: 0.8590
24
+ - Accuracy Leaf: 0.7032
25
+ - Accuracy Flower: 0.0
26
+ - Accuracy Stem: 0.5505
27
+ - Iou Void: 0.0
28
+ - Iou Fruit: 0.8554
29
+ - Iou Leaf: 0.6976
30
+ - Iou Flower: 0.0
31
+ - Iou Stem: 0.5381
32
+ - Median Iou: 0.5381
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 0.0006
52
+ - train_batch_size: 10
53
+ - eval_batch_size: 10
54
+ - seed: 42
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem | Median Iou |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:|:----------:|
63
+ | 0.8566 | 1.0 | 575 | 0.3365 | 0.3723 | 0.4705 | 0.6560 | nan | 0.8000 | 0.6122 | 0.0 | 0.4699 | 0.0 | 0.7976 | 0.6041 | 0.0 | 0.4598 | 0.4598 |
64
+ | 0.3338 | 2.0 | 1150 | 0.3030 | 0.3922 | 0.4937 | 0.7155 | nan | 0.8558 | 0.7024 | 0.0 | 0.4166 | 0.0 | 0.8517 | 0.6972 | 0.0 | 0.4119 | 0.4119 |
65
+ | 0.3477 | 3.0 | 1725 | 0.2914 | 0.4182 | 0.5282 | 0.7341 | nan | 0.8590 | 0.7032 | 0.0 | 0.5505 | 0.0 | 0.8554 | 0.6976 | 0.0 | 0.5381 | 0.5381 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.38.0.dev0
71
+ - Pytorch 2.1.2+cu121
72
+ - Datasets 2.16.1
73
+ - Tokenizers 0.15.0