biencoder_embedding / handler.py
jpohhhh's picture
Import Dict
bee946d
raw
history blame
647 Bytes
from sentence_transformers import SentenceTransformer, util
from typing import Dict, List, Any
class EndpointHandler():
def __init__(self, path=""):
self.model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
sentences = data.pop("inputs",data)
embeddings = model.encode(sentences)
return embeddings.tolist()