Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +104 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2524.62 +/- 96.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd9010cf456d33725ec833bd8b8d73783077350c11c5272889b7a54763bef6c0
|
3 |
+
size 125205
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f51d01f0ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51d01f0f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51d01f4040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51d01f40d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f51d01f4160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f51d01f41f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f51d01f4280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51d01f4310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f51d01f43a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51d01f4430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51d01f44c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51d01f4550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f51d01e9e10>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
26 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
27 |
+
"optimizer_kwargs": {
|
28 |
+
"alpha": 0.99,
|
29 |
+
"eps": 1e-05,
|
30 |
+
"weight_decay": 0
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"observation_space": {
|
34 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
35 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
36 |
+
"dtype": "float32",
|
37 |
+
"_shape": [
|
38 |
+
28
|
39 |
+
],
|
40 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
41 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
42 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
43 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"_np_random": null
|
45 |
+
},
|
46 |
+
"action_space": {
|
47 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
48 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
49 |
+
"dtype": "float32",
|
50 |
+
"_shape": [
|
51 |
+
8
|
52 |
+
],
|
53 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
54 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
55 |
+
"bounded_below": "[ True True True True True True True True]",
|
56 |
+
"bounded_above": "[ True True True True True True True True]",
|
57 |
+
"_np_random": null
|
58 |
+
},
|
59 |
+
"n_envs": 4,
|
60 |
+
"num_timesteps": 1731028,
|
61 |
+
"_total_timesteps": 2500000,
|
62 |
+
"_num_timesteps_at_start": 1000000,
|
63 |
+
"seed": null,
|
64 |
+
"action_noise": null,
|
65 |
+
"start_time": 1675628336125383106,
|
66 |
+
"learning_rate": 0.0003,
|
67 |
+
"tensorboard_log": "logs",
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
71 |
+
},
|
72 |
+
"_last_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAwtfz951JE/8FuIv/H6qD+D/v4/uKTuP4vYkj8H+na/aX8DPxy/57+XvY0/5zOcv0B6Uj/LHnA/qi2Mv1isEj+Olk8/o+g+v6/tMT/R8wI6R2IZPuA7GsDIKJI/fauIvtg1gL8Q8Cs/g2yePn2cHD9piYM/kSilP4vpu7+3LuY/wiwJQG2X3j8v6Jg/pt2Zv+Fu1r6Vzw7Ahx1jP0xkkr+G74U/DxhfPw5YPL/wV38/m+PUPTLKxL/uuTU/TnZ6PzmWNL8UowTAR02YPsRPt7/YNYC/EPArP4Nsnj59nBw/GeOZP88WDL/24EU/J6+cPkPvFz6ten8/SQ2xP3pxa78Gnao/JWMnwFUVxj90wH+/ntyrPzgy4r3/iqG/NY4DQDtvlT8VmpS/jYcyP+q9dDs86w287QMQwDymjz/89Ro/2DWAvxDwKz+DbJ4+fZwcP6t8tz9+T6A+FWpiPhGoyz/J8T4/S0lfv4g+PD/3doy/O2hKvwhofj4HBX4+NOJGv2E0UD83JKC/GTwEv7aOMr/WjJS+7ARcv9p9074OLg7AxN58v+I8kT83FHA9H5adv9g1gL+ilL6/g2yePj470b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
75 |
+
},
|
76 |
+
"_last_episode_starts": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
79 |
+
},
|
80 |
+
"_last_original_obs": {
|
81 |
+
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACe2TO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALa6vPAAAAABIrPq/AAAAAA+LLT0AAAAA7ET7PwAAAACSpb+9AAAAAE6A+D8AAAAAFBU+vQAAAADYr+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSB8NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNrCz4AAAAAmigBwAAAAAAF0K09AAAAALrW2j8AAAAAtbX9PQAAAABCjNk/AAAAAMDHtL0AAAAAWOHZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpkiTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID40zc8AAAAALBD3b8AAAAAt5KCvQAAAADN2N0/AAAAAOid/z0AAAAAyWzrPwAAAAAIxzk7AAAAAAKM3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATotW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsJJcPQAAAAB2V+W/AAAAAHhimj0AAAAATE3ePwAAAADIJx69AAAAAMHx/D8AAAAAJXhZPQAAAADn5PC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
83 |
+
},
|
84 |
+
"_episode_num": 0,
|
85 |
+
"use_sde": false,
|
86 |
+
"sde_sample_freq": -1,
|
87 |
+
"_current_progress_remaining": 0.3075968,
|
88 |
+
"ep_info_buffer": {
|
89 |
+
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKR/1Etuk1yMAWyUTegDjAF0lEdAqMC1d9lVcXV9lChoBkdApCIXYSQHRmgHTegDaAhHQKjFyn0kGA11fZQoaAZHQKOrilImPYFoB03oA2gIR0CoxqwBgeA/dX2UKGgGR0Ci6tf29L6DaAdN6ANoCEdAqMlFZJTVD3V9lChoBkdApC8IGdI5HWgHTegDaAhHQKjL+IEbHZN1fZQoaAZHQKMJ3isny/doB03oA2gIR0Co0Rui35N5dX2UKGgGR0Ci79LrgOz6aAdN6ANoCEdAqNHxg7YChnV9lChoBkdAo5BFV7x/eGgHTegDaAhHQKjUnHggow51fZQoaAZHQKP4yFbFCLNoB03oA2gIR0Co12FiKBNFdX2UKGgGR0CjVBGlZX+3aAdN6ANoCEdAqNx8nTiKi3V9lChoBkdAort1d5Y5k2gHTegDaAhHQKjdV/pdKNB1fZQoaAZHQKPH7rDZUUBoB03oA2gIR0Co3/AKv3ajdX2UKGgGR0CkOYG+CbtraAdN6ANoCEdAqOKn2TPjXHV9lChoBkdApAWPZElVtGgHTegDaAhHQKjnxH1e0HB1fZQoaAZHQKRRmyX2M85oB03oA2gIR0Co6JybpeNUdX2UKGgGR0CkRdBO58SgaAdN6ANoCEdAqOtUc0cfeXV9lChoBkdAon6w4GUwBmgHTegDaAhHQKjuE5T6zmh1fZQoaAZHQKPSH6+nIhhoB03oA2gIR0Co80MaCL/CdX2UKGgGR0CkhU99Dx9YaAdN6ANoCEdAqPQmDrZ8KHV9lChoBkdAo6Y/YFqzq2gHTegDaAhHQKj25TBInSh1fZQoaAZHQKL0WF23azxoB03oA2gIR0Co+bUJOWSmdX2UKGgGR0CjJHkUj9n9aAdN6ANoCEdAqP7rNliBoXV9lChoBkdApHKZxvNu+GgHTegDaAhHQKj/yVX3g1p1fZQoaAZHQKPX36C17Y1oB03oA2gIR0CpAn1l5GBndX2UKGgGR0CjFrwlSjxkaAdN6ANoCEdAqQVA2qDK5nV9lChoBkdAoTmk+9rXUmgHTegDaAhHQKkKZN34bjt1fZQoaAZHQKLjN0th/iJoB03oA2gIR0CpCz8qWkaddX2UKGgGR0Ci4x3ZPEbYaAdN6ANoCEdAqQ3uy5Zr6HV9lChoBkdAo119DBuXNWgHTegDaAhHQKkQsl9Brvd1fZQoaAZHQKMkepz90ihoB03oA2gIR0CpFb8gQpWndX2UKGgGR0Cjh3yH2ys0aAdN6ANoCEdAqRabCxeLN3V9lChoBkdApFTQa5wwTWgHTegDaAhHQKkZ4jJMg2Z1fZQoaAZHQKOWTR4QjD9oB03oA2gIR0CpHdpUYKpldX2UKGgGR0ChwvUUXYUWaAdN6ANoCEdAqSTglD4QBnV9lChoBkdAo7JaPyTY/WgHTegDaAhHQKklt/Q0GeN1fZQoaAZHQKKUQYG+sYFoB03oA2gIR0CpKGAE2YOUdX2UKGgGR0CkEa97fHghaAdN6ANoCEdAqSsT3Gn4wnV9lChoBkdAo6AhlSS/02gHTegDaAhHQKkwK/oJRfp1fZQoaAZHQKQNL9lVcUxoB03oA2gIR0CpMQcbBGhFdX2UKGgGR0CjG4+UY8+zaAdN6ANoCEdAqTOwZjx0+3V9lChoBkdAovdHDtPYWmgHTegDaAhHQKk2gPxQSBd1fZQoaAZHQKP0JWT5ftxoB03oA2gIR0CpO7NedCmedX2UKGgGR0CkuJrXlKbsaAdN6ANoCEdAqTyJmI0qIHV9lChoBkdAoyrWk8A7xWgHTegDaAhHQKk/LZid8Rd1fZQoaAZHQKSmK1OTJQtoB03oA2gIR0CpQdwzk6tDdX2UKGgGR0CianW69TP0aAdN6ANoCEdAqUbv8fmtAHV9lChoBkdApCGCujh1kmgHTegDaAhHQKlHyAavRqp1fZQoaAZHQKPBOPe54GFoB03oA2gIR0CpSmfFirksdX2UKGgGR0CjjJxISUTtaAdN6ANoCEdAqU0i57PY4HV9lChoBkdAopfc9pyp72gHTegDaAhHQKlSTJ4jbBZ1fZQoaAZHQKPO8hY/3WZoB03oA2gIR0CpUyUSZjQRdX2UKGgGR0CkHQG+bmU4aAdN6ANoCEdAqVXAN/e+EnV9lChoBkdApBmCeNDMNmgHTegDaAhHQKlYbgdfb9J1fZQoaAZHQKSODkTYdyVoB03oA2gIR0CpXbI3BHkMdX2UKGgGR0CkAuv4mCyyaAdN6ANoCEdAqV6JeeFtbnV9lChoBkdApGVIHNX5nGgHTegDaAhHQKlhMc4HX3B1fZQoaAZHQKPcWgOjIq9oB03oA2gIR0CpY+tXYDkmdX2UKGgGR0Cg5Ilo+OfeaAdN6ANoCEdAqWkI2S+xnnV9lChoBkdApD0FITXarWgHTegDaAhHQKlp4TUy57R1fZQoaAZHQKL67/BnBcloB03oA2gIR0CpbI+Bg/kedX2UKGgGR0CjCAVdgOSXaAdN6ANoCEdAqW9N+I/JNnV9lChoBkdApJEdMZgogGgHTegDaAhHQKl0cq3mV7h1fZQoaAZHQKLZLsDW9UVoB03oA2gIR0CpdUhhhH9WdX2UKGgGR0CiXNfHPu5SaAdN6ANoCEdAqXf5WPtD2XV9lChoBkdApHGxZOi35WgHTegDaAhHQKl6uqx1PnB1fZQoaAZHQKLQKro4dZJoB03oA2gIR0Cpf9b5Ec81dX2UKGgGR0CjxByfUWl/aAdN6ANoCEdAqYC0y57PZHV9lChoBkdAoaSG/xlQM2gHTegDaAhHQKmDkVzIV/N1fZQoaAZHQKLFfC1qnFZoB03oA2gIR0Cphml85S3tdX2UKGgGR0Ci6miX6ZYxaAdN6ANoCEdAqYvXbM5fdHV9lChoBkdAoILvyLAHmmgHTegDaAhHQKmMuF6iTMd1fZQoaAZHQKHslHNorWloB03oA2gIR0Cpj2JzcRDkdX2UKGgGR0Cipr7xusLfaAdN6ANoCEdAqZIcNtqHoHV9lChoBkdAom4bXUYsNGgHTegDaAhHQKmXSbtqpLp1fZQoaAZHQKPAZGtp22ZoB03oA2gIR0CpmCIIWxhVdX2UKGgGR0CjYE+DFqBVaAdN6ANoCEdAqZrwmE4//3V9lChoBkdAov7lRR/EwWgHTegDaAhHQKmdyY0l7dB1fZQoaAZHQKO2PCYTkABoB03oA2gIR0Cpo1Xw9aEBdX2UKGgGR0CjPLhdUsFuaAdN6ANoCEdAqaQ15KODJ3V9lChoBkdAoln5HI6sAGgHTegDaAhHQKmm8Ygq3E11fZQoaAZHQKLQM36yjYZoB03oA2gIR0CpqbH9WIXTdX2UKGgGR0ChGmHLA57xaAdN6ANoCEdAqa8tu5z5oHV9lChoBkdAogG47xNIsmgHTegDaAhHQKmwEKhtcfN1fZQoaAZHQKMHF4UN8VpoB03oA2gIR0CpstuAiFCcdX2UKGgGR0Ci0ldfb9IgaAdN6ANoCEdAqbWfwPRRdnV9lChoBkdApGkc6xPfsWgHTegDaAhHQKm62fJ3gUF1fZQoaAZHQKLGsiiZfD1oB03oA2gIR0Cpu7kCmuTzdX2UKGgGR0CjivPJRwZPaAdN6ANoCEdAqb50UO/cnHV9lChoBkdApG/+AXl8xGgHTegDaAhHQKnBOwosqax1fZQoaAZHQKQrPKGtZFJoB03oA2gIR0CpxnDh99c9dX2UKGgGR0CkBZqR+z+naAdN6ANoCEdAqcdI0fozN3V9lChoBkdApBtQduHerWgHTegDaAhHQKnJ8STyJ9B1fZQoaAZHQKQd40F8ohJoB03oA2gIR0CpzLejdpIudX2UKGgGR0CjpDEVFhG6aAdN6ANoCEdAqdHWlsP8RHV9lChoBkdAoZ+1OoHcDmgHTegDaAhHQKnStmDDjzZ1fZQoaAZHQKQank1dgOVoB03oA2gIR0Cp1Ww5FPSEdX2UKGgGR0CjyQG7jDKpaAdN6ANoCEdAqdgt1ZDArXV9lChoBkdAo4HWI0qH5GgHTegDaAhHQKndwSamXPZ1fZQoaAZHQKKCebDuSfVoB03oA2gIR0Cp3qNS619fdX2UKGgGR0CiczHLRrrPaAdN6ANoCEdAqeFJC0F8onVlLg=="
|
91 |
+
},
|
92 |
+
"ep_success_buffer": {
|
93 |
+
":type:": "<class 'collections.deque'>",
|
94 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
+
},
|
96 |
+
"_n_updates": 27047,
|
97 |
+
"n_steps": 16,
|
98 |
+
"gamma": 0.99,
|
99 |
+
"gae_lambda": 1.0,
|
100 |
+
"ent_coef": 0.0,
|
101 |
+
"vf_coef": 0.5,
|
102 |
+
"max_grad_norm": 0.5,
|
103 |
+
"normalize_advantage": true
|
104 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:197744dad304f8780f14c99149f1b6615bfb6f9a0d77d4f220b36adfc8cc63b7
|
3 |
+
size 54206
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f176df0cd17e415643d1f59f51f0de7001ec996e20affba3e88d74bf4a5e5c22
|
3 |
+
size 54974
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f51d01f0ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51d01f0f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51d01f4040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51d01f40d0>", "_build": "<function ActorCriticPolicy._build at 0x7f51d01f4160>", "forward": "<function ActorCriticPolicy.forward at 0x7f51d01f41f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f51d01f4280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51d01f4310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f51d01f43a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51d01f4430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51d01f44c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51d01f4550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f51d01e9e10>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1731028, "_total_timesteps": 2500000, "_num_timesteps_at_start": 1000000, "seed": null, "action_noise": null, "start_time": 1675628336125383106, "learning_rate": 0.0003, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAwtfz951JE/8FuIv/H6qD+D/v4/uKTuP4vYkj8H+na/aX8DPxy/57+XvY0/5zOcv0B6Uj/LHnA/qi2Mv1isEj+Olk8/o+g+v6/tMT/R8wI6R2IZPuA7GsDIKJI/fauIvtg1gL8Q8Cs/g2yePn2cHD9piYM/kSilP4vpu7+3LuY/wiwJQG2X3j8v6Jg/pt2Zv+Fu1r6Vzw7Ahx1jP0xkkr+G74U/DxhfPw5YPL/wV38/m+PUPTLKxL/uuTU/TnZ6PzmWNL8UowTAR02YPsRPt7/YNYC/EPArP4Nsnj59nBw/GeOZP88WDL/24EU/J6+cPkPvFz6ten8/SQ2xP3pxa78Gnao/JWMnwFUVxj90wH+/ntyrPzgy4r3/iqG/NY4DQDtvlT8VmpS/jYcyP+q9dDs86w287QMQwDymjz/89Ro/2DWAvxDwKz+DbJ4+fZwcP6t8tz9+T6A+FWpiPhGoyz/J8T4/S0lfv4g+PD/3doy/O2hKvwhofj4HBX4+NOJGv2E0UD83JKC/GTwEv7aOMr/WjJS+7ARcv9p9074OLg7AxN58v+I8kT83FHA9H5adv9g1gL+ilL6/g2yePj470b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACe2TO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALa6vPAAAAABIrPq/AAAAAA+LLT0AAAAA7ET7PwAAAACSpb+9AAAAAE6A+D8AAAAAFBU+vQAAAADYr+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSB8NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGNrCz4AAAAAmigBwAAAAAAF0K09AAAAALrW2j8AAAAAtbX9PQAAAABCjNk/AAAAAMDHtL0AAAAAWOHZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpkiTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID40zc8AAAAALBD3b8AAAAAt5KCvQAAAADN2N0/AAAAAOid/z0AAAAAyWzrPwAAAAAIxzk7AAAAAAKM3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATotW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsJJcPQAAAAB2V+W/AAAAAHhimj0AAAAATE3ePwAAAADIJx69AAAAAMHx/D8AAAAAJXhZPQAAAADn5PC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.3075968, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKR/1Etuk1yMAWyUTegDjAF0lEdAqMC1d9lVcXV9lChoBkdApCIXYSQHRmgHTegDaAhHQKjFyn0kGA11fZQoaAZHQKOrilImPYFoB03oA2gIR0CoxqwBgeA/dX2UKGgGR0Ci6tf29L6DaAdN6ANoCEdAqMlFZJTVD3V9lChoBkdApC8IGdI5HWgHTegDaAhHQKjL+IEbHZN1fZQoaAZHQKMJ3isny/doB03oA2gIR0Co0Rui35N5dX2UKGgGR0Ci79LrgOz6aAdN6ANoCEdAqNHxg7YChnV9lChoBkdAo5BFV7x/eGgHTegDaAhHQKjUnHggow51fZQoaAZHQKP4yFbFCLNoB03oA2gIR0Co12FiKBNFdX2UKGgGR0CjVBGlZX+3aAdN6ANoCEdAqNx8nTiKi3V9lChoBkdAort1d5Y5k2gHTegDaAhHQKjdV/pdKNB1fZQoaAZHQKPH7rDZUUBoB03oA2gIR0Co3/AKv3ajdX2UKGgGR0CkOYG+CbtraAdN6ANoCEdAqOKn2TPjXHV9lChoBkdApAWPZElVtGgHTegDaAhHQKjnxH1e0HB1fZQoaAZHQKRRmyX2M85oB03oA2gIR0Co6JybpeNUdX2UKGgGR0CkRdBO58SgaAdN6ANoCEdAqOtUc0cfeXV9lChoBkdAon6w4GUwBmgHTegDaAhHQKjuE5T6zmh1fZQoaAZHQKPSH6+nIhhoB03oA2gIR0Co80MaCL/CdX2UKGgGR0CkhU99Dx9YaAdN6ANoCEdAqPQmDrZ8KHV9lChoBkdAo6Y/YFqzq2gHTegDaAhHQKj25TBInSh1fZQoaAZHQKL0WF23azxoB03oA2gIR0Co+bUJOWSmdX2UKGgGR0CjJHkUj9n9aAdN6ANoCEdAqP7rNliBoXV9lChoBkdApHKZxvNu+GgHTegDaAhHQKj/yVX3g1p1fZQoaAZHQKPX36C17Y1oB03oA2gIR0CpAn1l5GBndX2UKGgGR0CjFrwlSjxkaAdN6ANoCEdAqQVA2qDK5nV9lChoBkdAoTmk+9rXUmgHTegDaAhHQKkKZN34bjt1fZQoaAZHQKLjN0th/iJoB03oA2gIR0CpCz8qWkaddX2UKGgGR0Ci4x3ZPEbYaAdN6ANoCEdAqQ3uy5Zr6HV9lChoBkdAo119DBuXNWgHTegDaAhHQKkQsl9Brvd1fZQoaAZHQKMkepz90ihoB03oA2gIR0CpFb8gQpWndX2UKGgGR0Cjh3yH2ys0aAdN6ANoCEdAqRabCxeLN3V9lChoBkdApFTQa5wwTWgHTegDaAhHQKkZ4jJMg2Z1fZQoaAZHQKOWTR4QjD9oB03oA2gIR0CpHdpUYKpldX2UKGgGR0ChwvUUXYUWaAdN6ANoCEdAqSTglD4QBnV9lChoBkdAo7JaPyTY/WgHTegDaAhHQKklt/Q0GeN1fZQoaAZHQKKUQYG+sYFoB03oA2gIR0CpKGAE2YOUdX2UKGgGR0CkEa97fHghaAdN6ANoCEdAqSsT3Gn4wnV9lChoBkdAo6AhlSS/02gHTegDaAhHQKkwK/oJRfp1fZQoaAZHQKQNL9lVcUxoB03oA2gIR0CpMQcbBGhFdX2UKGgGR0CjG4+UY8+zaAdN6ANoCEdAqTOwZjx0+3V9lChoBkdAovdHDtPYWmgHTegDaAhHQKk2gPxQSBd1fZQoaAZHQKP0JWT5ftxoB03oA2gIR0CpO7NedCmedX2UKGgGR0CkuJrXlKbsaAdN6ANoCEdAqTyJmI0qIHV9lChoBkdAoyrWk8A7xWgHTegDaAhHQKk/LZid8Rd1fZQoaAZHQKSmK1OTJQtoB03oA2gIR0CpQdwzk6tDdX2UKGgGR0CianW69TP0aAdN6ANoCEdAqUbv8fmtAHV9lChoBkdApCGCujh1kmgHTegDaAhHQKlHyAavRqp1fZQoaAZHQKPBOPe54GFoB03oA2gIR0CpSmfFirksdX2UKGgGR0CjjJxISUTtaAdN6ANoCEdAqU0i57PY4HV9lChoBkdAopfc9pyp72gHTegDaAhHQKlSTJ4jbBZ1fZQoaAZHQKPO8hY/3WZoB03oA2gIR0CpUyUSZjQRdX2UKGgGR0CkHQG+bmU4aAdN6ANoCEdAqVXAN/e+EnV9lChoBkdApBmCeNDMNmgHTegDaAhHQKlYbgdfb9J1fZQoaAZHQKSODkTYdyVoB03oA2gIR0CpXbI3BHkMdX2UKGgGR0CkAuv4mCyyaAdN6ANoCEdAqV6JeeFtbnV9lChoBkdApGVIHNX5nGgHTegDaAhHQKlhMc4HX3B1fZQoaAZHQKPcWgOjIq9oB03oA2gIR0CpY+tXYDkmdX2UKGgGR0Cg5Ilo+OfeaAdN6ANoCEdAqWkI2S+xnnV9lChoBkdApD0FITXarWgHTegDaAhHQKlp4TUy57R1fZQoaAZHQKL67/BnBcloB03oA2gIR0CpbI+Bg/kedX2UKGgGR0CjCAVdgOSXaAdN6ANoCEdAqW9N+I/JNnV9lChoBkdApJEdMZgogGgHTegDaAhHQKl0cq3mV7h1fZQoaAZHQKLZLsDW9UVoB03oA2gIR0CpdUhhhH9WdX2UKGgGR0CiXNfHPu5SaAdN6ANoCEdAqXf5WPtD2XV9lChoBkdApHGxZOi35WgHTegDaAhHQKl6uqx1PnB1fZQoaAZHQKLQKro4dZJoB03oA2gIR0Cpf9b5Ec81dX2UKGgGR0CjxByfUWl/aAdN6ANoCEdAqYC0y57PZHV9lChoBkdAoaSG/xlQM2gHTegDaAhHQKmDkVzIV/N1fZQoaAZHQKLFfC1qnFZoB03oA2gIR0Cphml85S3tdX2UKGgGR0Ci6miX6ZYxaAdN6ANoCEdAqYvXbM5fdHV9lChoBkdAoILvyLAHmmgHTegDaAhHQKmMuF6iTMd1fZQoaAZHQKHslHNorWloB03oA2gIR0Cpj2JzcRDkdX2UKGgGR0Cipr7xusLfaAdN6ANoCEdAqZIcNtqHoHV9lChoBkdAom4bXUYsNGgHTegDaAhHQKmXSbtqpLp1fZQoaAZHQKPAZGtp22ZoB03oA2gIR0CpmCIIWxhVdX2UKGgGR0CjYE+DFqBVaAdN6ANoCEdAqZrwmE4//3V9lChoBkdAov7lRR/EwWgHTegDaAhHQKmdyY0l7dB1fZQoaAZHQKO2PCYTkABoB03oA2gIR0Cpo1Xw9aEBdX2UKGgGR0CjPLhdUsFuaAdN6ANoCEdAqaQ15KODJ3V9lChoBkdAoln5HI6sAGgHTegDaAhHQKmm8Ygq3E11fZQoaAZHQKLQM36yjYZoB03oA2gIR0CpqbH9WIXTdX2UKGgGR0ChGmHLA57xaAdN6ANoCEdAqa8tu5z5oHV9lChoBkdAogG47xNIsmgHTegDaAhHQKmwEKhtcfN1fZQoaAZHQKMHF4UN8VpoB03oA2gIR0CpstuAiFCcdX2UKGgGR0Ci0ldfb9IgaAdN6ANoCEdAqbWfwPRRdnV9lChoBkdApGkc6xPfsWgHTegDaAhHQKm62fJ3gUF1fZQoaAZHQKLGsiiZfD1oB03oA2gIR0Cpu7kCmuTzdX2UKGgGR0CjivPJRwZPaAdN6ANoCEdAqb50UO/cnHV9lChoBkdApG/+AXl8xGgHTegDaAhHQKnBOwosqax1fZQoaAZHQKQrPKGtZFJoB03oA2gIR0CpxnDh99c9dX2UKGgGR0CkBZqR+z+naAdN6ANoCEdAqcdI0fozN3V9lChoBkdApBtQduHerWgHTegDaAhHQKnJ8STyJ9B1fZQoaAZHQKQd40F8ohJoB03oA2gIR0CpzLejdpIudX2UKGgGR0CjpDEVFhG6aAdN6ANoCEdAqdHWlsP8RHV9lChoBkdAoZ+1OoHcDmgHTegDaAhHQKnStmDDjzZ1fZQoaAZHQKQank1dgOVoB03oA2gIR0Cp1Ww5FPSEdX2UKGgGR0CjyQG7jDKpaAdN6ANoCEdAqdgt1ZDArXV9lChoBkdAo4HWI0qH5GgHTegDaAhHQKndwSamXPZ1fZQoaAZHQKKCebDuSfVoB03oA2gIR0Cp3qNS619fdX2UKGgGR0CiczHLRrrPaAdN6ANoCEdAqeFJC0F8onVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 27047, "n_steps": 16, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a7d37fbcc7d15d94a4229e678f12ce4c0c4f131e7dee3d7bf15b56c500f1662
|
3 |
+
size 1358061
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2524.6180387052445, "std_reward": 96.82336685856187, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T20:43:23.704757"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eed9aaafa49fbb85da3698abed2735a9dbb80836412e87b4d8b6c729015f0c60
|
3 |
+
size 2136
|