--- library_name: transformers tags: - generated_from_trainer model-index: - name: SkLIP-masked results: [] license: mit datasets: - joshuachou/SkinCAP language: - en base_model: - allenai/scibert_scivocab_uncased - openai/clip-vit-base-patch32 pipeline_tag: feature-extraction --- # SkLIPA SkLIPA (Skin CLIP Anonimised) is a hybrid CLIP model finetuned on the [SkinCAP](https://hf.rst.im/datasets/joshuachou/SkinCAP), a multi-modal dermatology dataset annotated with rich medical captions. It is built with a SciBERT text encoder and the pre-trained CLIP-32 vision encoder. The anonymisation procedure was designed to remove age and gender information form the textual description of each image, replacing them with `[AGE]` and `[GENDER]` tokens. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.2018 | 1.0 | 57 | 4.1344 | | 4.1697 | 2.0 | 114 | 4.1298 | | 4.1668 | 3.0 | 171 | 4.1276 | | 4.164 | 4.0 | 228 | 4.1263 | | 4.158 | 5.0 | 285 | 4.1253 | | 4.1583 | 6.0 | 342 | 4.1246 | | 4.1569 | 7.0 | 399 | 4.1243 | | 4.1575 | 8.0 | 456 | 4.1241 | | 4.1564 | 9.0 | 513 | 4.1240 | | 4.1604 | 10.0 | 570 | 4.1240 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1