Upload 8B_lora.yaml with huggingface_hub
Browse files- 8B_lora.yaml +93 -0
8B_lora.yaml
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py
|
2 |
+
# using a Llama3 8B model
|
3 |
+
#
|
4 |
+
# This config assumes that you've run the following command before launching
|
5 |
+
# this run:
|
6 |
+
# tune download meta-llama/Meta-Llama-3-8B --output-dir /tmp/Meta-Llama-3-8B --hf-token <HF_TOKEN>
|
7 |
+
#
|
8 |
+
# To launch on 2 devices, run the following command from root:
|
9 |
+
# tune run --nproc_per_node 2 lora_finetune_distributed --config llama3/8B_lora
|
10 |
+
#
|
11 |
+
# You can add specific overrides through the command line. For example
|
12 |
+
# to override the checkpointer directory while launching training
|
13 |
+
# you can run:
|
14 |
+
# tune run --nproc_per_node 2 lora_finetune_distributed --config llama3/8B_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
|
15 |
+
#
|
16 |
+
# This config works best when the model is being fine-tuned on 2+ GPUs.
|
17 |
+
# For single device LoRA finetuning please use 8B_lora_single_device.yaml
|
18 |
+
# or 8B_qlora_single_device.yaml
|
19 |
+
|
20 |
+
# Tokenizer
|
21 |
+
tokenizer:
|
22 |
+
_component_: torchtune.models.llama3.llama3_tokenizer
|
23 |
+
path: ./model/original/tokenizer.model
|
24 |
+
|
25 |
+
# Model Arguments
|
26 |
+
model:
|
27 |
+
_component_: torchtune.models.llama3.lora_llama3_8b
|
28 |
+
lora_attn_modules: ['q_proj', 'v_proj']
|
29 |
+
apply_lora_to_mlp: False
|
30 |
+
apply_lora_to_output: False
|
31 |
+
lora_rank: 8
|
32 |
+
lora_alpha: 16
|
33 |
+
|
34 |
+
checkpointer:
|
35 |
+
_component_: torchtune.utils.FullModelMetaCheckpointer
|
36 |
+
checkpoint_dir: ./model/original/
|
37 |
+
checkpoint_files: [
|
38 |
+
consolidated.00.pth
|
39 |
+
]
|
40 |
+
recipe_checkpoint: null
|
41 |
+
output_dir: ./finetuned_model/
|
42 |
+
model_type: LLAMA3
|
43 |
+
resume_from_checkpoint: False
|
44 |
+
|
45 |
+
# Dataset and Sampler
|
46 |
+
# InstructDataset(
|
47 |
+
# tokenizer=tokenizer,
|
48 |
+
# source=source,
|
49 |
+
# template=GrammarErrorCorrectionTemplate,
|
50 |
+
# column_map={"sentence": "input"},
|
51 |
+
# train_on_input=train_on_input,
|
52 |
+
# split="train",
|
53 |
+
# )
|
54 |
+
dataset:
|
55 |
+
_component_: torchtune.datasets.instruct_dataset
|
56 |
+
source: grammarly/coedit
|
57 |
+
template: GrammarErrorCorrectionTemplate
|
58 |
+
column_map: {"sentence": "src", "output": "tgt"}
|
59 |
+
train_on_input: False
|
60 |
+
split: train
|
61 |
+
seed: 123
|
62 |
+
shuffle: True
|
63 |
+
batch_size: 4
|
64 |
+
|
65 |
+
# Optimizer and Scheduler
|
66 |
+
optimizer:
|
67 |
+
_component_: torch.optim.AdamW
|
68 |
+
weight_decay: 0.01
|
69 |
+
lr: 3e-4
|
70 |
+
lr_scheduler:
|
71 |
+
_component_: torchtune.modules.get_cosine_schedule_with_warmup
|
72 |
+
num_warmup_steps: 100
|
73 |
+
|
74 |
+
loss:
|
75 |
+
_component_: torch.nn.CrossEntropyLoss
|
76 |
+
|
77 |
+
# Training
|
78 |
+
epochs: 2
|
79 |
+
max_steps_per_epoch: null
|
80 |
+
gradient_accumulation_steps: 32
|
81 |
+
|
82 |
+
# Logging
|
83 |
+
output_dir: ./lora_finetune_output
|
84 |
+
metric_logger:
|
85 |
+
_component_: torchtune.utils.metric_logging.WandBLogger
|
86 |
+
project: torchtune
|
87 |
+
group: llama3-grammarly
|
88 |
+
log_every_n_steps: null
|
89 |
+
|
90 |
+
# Environment
|
91 |
+
device: cuda
|
92 |
+
dtype: bf16
|
93 |
+
enable_activation_checkpointing: False
|