File size: 34,567 Bytes
7aefe45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
import os
import pathlib
from PIL import Image
from functools import partial
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets.folder import is_image_file
from tqdm.auto import tqdm
import numpy as np
from skimage.color import rgb2gray
import diffusers
from libs.engine import ModelState
from libs.metric.lpips_origin import LPIPS
from libs.metric.piq.perceptual import DISTS as DISTS_PIQ
from libs.metric.clip_score import CLIPScoreWrapper
from methods.painter.diffsketchedit import (
Painter, SketchPainterOptimizer, Token2AttnMixinASDSPipeline, Token2AttnMixinASDSSDXLPipeline)
from methods.painter.diffsketchedit.sketch_utils import (
log_tensor_img, plt_batch, plt_attn, save_tensor_img, fix_image_scale)
from methods.painter.diffsketchedit.mask_utils import get_mask_u2net
from methods.token2attn.attn_control import AttentionStore, EmptyControl, \
LocalBlend, AttentionReplace, AttentionRefine, AttentionReweight, get_equalizer
from methods.token2attn.ptp_utils import view_images, get_word_inds
from methods.diffusers_warp import init_diffusion_pipeline, model2res
from methods.diffvg_warp import init_diffvg
from methods.painter.diffsketchedit.process_svg import remove_low_opacity_paths
class DiffSketchEditPipeline(ModelState):
def __init__(self, args):
super().__init__(args, ignore_log=True)
init_diffvg(self.device, True, args.print_timing)
if args.model_id == "sdxl":
# default LSDSSDXLPipeline scheduler is EulerDiscreteScheduler
# when LSDSSDXLPipeline calls, scheduler.timesteps will change in step 4
# which causes problem in sds add_noise() function
# because the random t may not in scheduler.timesteps
custom_pipeline = Token2AttnMixinASDSSDXLPipeline
custom_scheduler = diffusers.DPMSolverMultistepScheduler
self.args.cross_attn_res = self.args.cross_attn_res * 2
elif args.model_id == 'sd21':
custom_pipeline = Token2AttnMixinASDSPipeline
custom_scheduler = diffusers.DDIMScheduler
elif args.model_id == 'sd15':
custom_pipeline = Token2AttnMixinASDSPipeline
custom_scheduler = diffusers.DDIMScheduler
else: # sd14
custom_pipeline = Token2AttnMixinASDSPipeline
custom_scheduler = None
self.diffusion = init_diffusion_pipeline(
self.args.model_id,
custom_pipeline=custom_pipeline,
custom_scheduler=custom_scheduler,
device=self.device,
local_files_only=not args.download,
force_download=args.force_download,
resume_download=args.resume_download,
ldm_speed_up=args.ldm_speed_up,
enable_xformers=args.enable_xformers,
gradient_checkpoint=args.gradient_checkpoint,
)
# init clip model and clip score wrapper
self.cargs = self.args.clip
self.clip_score_fn = CLIPScoreWrapper(self.cargs.model_name,
device=self.device,
visual_score=True,
feats_loss_type=self.cargs.feats_loss_type,
feats_loss_weights=self.cargs.feats_loss_weights,
fc_loss_weight=self.cargs.fc_loss_weight)
def update_info(self, seed, token_ind, prompt_input):
prompt_dir_name = prompt_input.split(' ')
prompt_dir_name = '_'.join(prompt_dir_name)
attn_log_ = f"-tk{token_ind}"
logdir_ = f"seed{seed}" \
f"{attn_log_}" \
f"-stage={self.args.run_stage}"
logdir_sec_ = f""
self.args.path_svg = ""
if self.args.run_stage > 0:
logdir_sec_ = f"{logdir_sec_}-local={self.args.vector_local_edit}"
last_svg_base = os.path.join(self.args.results_path, self.args.edit_type, prompt_dir_name, logdir_[:-1] + str(self.args.run_stage - 1))
if self.args.run_stage != 1:
last_svg_base += logdir_sec_
self.args.path_svg = os.path.join(last_svg_base, "visual_best.svg")
self.args.attention_init = False
logdir_ = f"{prompt_dir_name}" + f"/" + logdir_ + logdir_sec_
super().__init__(self.args, log_path_suffix=logdir_)
# create log dir
self.png_logs_dir = self.results_path / "png_logs"
self.svg_logs_dir = self.results_path / "svg_logs"
self.attn_logs_dir = self.results_path / "attn_logs"
if self.accelerator.is_main_process:
self.png_logs_dir.mkdir(parents=True, exist_ok=True)
self.svg_logs_dir.mkdir(parents=True, exist_ok=True)
self.attn_logs_dir.mkdir(parents=True, exist_ok=True)
self.g_device = torch.Generator().manual_seed(seed)
def load_render(self, target_img, attention_map, mask=None):
renderer = Painter(self.args,
num_strokes=self.args.num_paths,
num_segments=self.args.num_segments,
imsize=self.args.image_size,
device=self.device,
target_im=target_img,
attention_map=attention_map,
mask=mask)
return renderer
def attn_map_normalizing(self, cross_attn_map):
cross_attn_map = 255 * cross_attn_map / cross_attn_map.max()
# [res, res, 3]
cross_attn_map = cross_attn_map.unsqueeze(-1).expand(*cross_attn_map.shape, 3)
# [3, res, res]
cross_attn_map = cross_attn_map.permute(2, 0, 1).unsqueeze(0)
# [3, clip_size, clip_size]
cross_attn_map = F.interpolate(cross_attn_map, size=self.args.image_size, mode='bicubic')
cross_attn_map = torch.clamp(cross_attn_map, min=0, max=255)
# rgb to gray
cross_attn_map = rgb2gray(cross_attn_map.squeeze(0).permute(1, 2, 0)).astype(np.float32)
# torch to numpy
if cross_attn_map.shape[-1] != self.args.image_size and cross_attn_map.shape[-2] != self.args.image_size:
cross_attn_map = cross_attn_map.reshape(self.args.image_size, self.args.image_size)
# to [0, 1]
cross_attn_map = (cross_attn_map - cross_attn_map.min()) / (cross_attn_map.max() - cross_attn_map.min())
return cross_attn_map
def compute_local_edit_maps(self, cross_attn_maps_src_tar, prompts, words, save_path, threshold=0.3):
"""
cross_attn_maps_src_tar: [(res, res, 77), (res, res, 77)]
"""
local_edit_region = np.zeros(shape=(self.args.image_size, self.args.image_size), dtype=np.float32)
for i, (prompt, word) in enumerate(zip(prompts, words)):
ind = get_word_inds(prompt, word, self.diffusion.tokenizer) # list
assert len(ind) == 1
ind = ind[0]
cross_attn_map = cross_attn_maps_src_tar[i][:, :, ind] # (res, res)
cross_attn_map = self.attn_map_normalizing(cross_attn_map) # (image_size, image_size), [0.0, 1.0]
cross_attn_map_bin = cross_attn_map >= threshold
local_edit_region += cross_attn_map_bin
local_edit_region = (np.clip(local_edit_region, 0, 1) * 255).astype(np.uint8)
local_edit_region = Image.fromarray(local_edit_region, 'L')
local_edit_region.save(save_path, 'PNG')
def extract_ldm_attn(self, prompts, token_ind, changing_region_words, reweight_word, reweight_weight):
######################### Change here for editing methods #########################
## init controller
if not self.args.attention_init:
controller = EmptyControl()
else:
lb = LocalBlend(prompts=prompts,
words=changing_region_words, tokenizer=self.diffusion.tokenizer,
device=self.device) # changing region
# if self.args.edit_type == "none":
# controller = AttentionStore()
if self.args.edit_type == "replace":
controller = AttentionReplace(prompts=prompts,
num_steps=self.args.num_inference_steps,
cross_replace_steps=0.4, # larger is more similar shape
self_replace_steps=0.4,
local_blend=lb,
tokenizer=self.diffusion.tokenizer,
device=self.device)
elif self.args.edit_type == "refine":
controller = AttentionRefine(prompts=prompts,
num_steps=self.args.num_inference_steps,
cross_replace_steps=0.8, # larger is more similar shape
self_replace_steps=0.4,
local_blend=lb,
tokenizer=self.diffusion.tokenizer,
device=self.device)
elif self.args.edit_type == "reweight":
equalizer = get_equalizer(self.diffusion.tokenizer, prompts[1:],
reweight_word, reweight_weight)
controller = AttentionReweight(prompts=prompts,
num_steps=self.args.num_inference_steps,
cross_replace_steps=0.8, # larger is more similar shape
self_replace_steps=0.4,
local_blend=lb,
equalizer=equalizer,
# controller=controller_a,
tokenizer=self.diffusion.tokenizer,
device=self.device)
else:
raise Exception('Unknown edit_type:', self.args.edit_type)
######################### Change here for editing methods (end) #########################
height = width = model2res(self.args.model_id)
outputs = self.diffusion(prompt=prompts,
negative_prompt=[self.args.negative_prompt] * len(prompts),
height=height,
width=width,
controller=controller,
num_inference_steps=self.args.num_inference_steps,
guidance_scale=self.args.guidance_scale,
generator=self.g_device)
print('outputs.images', len(outputs.images))
for ii, img in enumerate(outputs.images):
if ii == 0:
filename = "ldm_generated_image.png"
target_file = self.results_path / filename
else:
filename = "ldm_generated_image" + str(ii) + ".png"
target_file_tmp = self.results_path / filename
view_images([np.array(img)], save_image=True, fp=target_file_tmp)
if self.args.attention_init:
"""ldm cross-attention map"""
cross_attention_maps, tokens = \
self.diffusion.get_cross_attention(prompts,
controller,
res=self.args.cross_attn_res,
from_where=("up", "down"),
save_path=self.results_path / "cross_attn.png",
select=0)
for ii in range(1, len(outputs.images)):
cross_attn_png_name = "cross_attn" + str(ii) + ".png"
cross_attention_maps_i, tokens_i = \
self.diffusion.get_cross_attention(prompts,
controller,
res=self.args.cross_attn_res,
from_where=("up", "down"),
save_path=self.results_path / cross_attn_png_name,
select=ii)
self.print(f"the length of tokens is {len(tokens)}, select {token_ind}-th token")
# [res, res, seq_len]
self.print(f"origin cross_attn_map shape: {cross_attention_maps.shape}")
# [res, res]
cross_attn_map = cross_attention_maps[:, :, token_ind]
self.print(f"select cross_attn_map shape: {cross_attn_map.shape}\n")
cross_attn_map = self.attn_map_normalizing(cross_attn_map)
######################### ldm cross-attention map (for vector local editing) #########################
cross_attention_maps_local_list = []
for ii in range(len(outputs.images)):
cross_attention_maps_local = \
self.diffusion.get_cross_attention2(prompts,
controller,
res=self.args.vector_local_edit_attn_res,
from_where=("up", "down"),
select=ii) # (res, res, 77)
cross_attention_maps_local_list.append(cross_attention_maps_local)
if ii == 0:
continue
save_name = "cross_attn_local_edit_" + str(self.args.vector_local_edit_attn_res) + "-" + str(ii) + ".png"
if self.args.edit_type == "replace":
self.compute_local_edit_maps([cross_attention_maps_local_list[ii-1]], [prompts[ii-1]], [changing_region_words[ii][0]],
save_path=self.results_path / save_name,
threshold=self.args.vector_local_edit_bin_threshold_replace)
elif self.args.edit_type == "refine":
self.compute_local_edit_maps([cross_attention_maps_local_list[ii]], [prompts[ii]], [changing_region_words[ii][1]],
save_path=self.results_path / save_name,
threshold=self.args.vector_local_edit_bin_threshold_refine)
elif self.args.edit_type == "reweight":
self.compute_local_edit_maps([cross_attention_maps_local_list[ii-1]], [prompts[ii-1]], [changing_region_words[ii][0]],
save_path=self.results_path / save_name,
threshold=self.args.vector_local_edit_bin_threshold_reweight)
if self.args.sd_image_only:
return target_file.as_posix(), None
######################### #########################
"""ldm self-attention map"""
self_attention_maps, svd, vh_ = \
self.diffusion.get_self_attention_comp(prompts,
controller,
res=self.args.self_attn_res,
from_where=("up", "down"),
img_size=self.args.image_size,
max_com=self.args.max_com,
save_path=self.results_path)
# comp self-attention map
if self.args.mean_comp:
self_attn = np.mean(vh_, axis=0)
self.print(f"use the mean of {self.args.max_com} comps.")
else:
self_attn = vh_[self.args.comp_idx]
self.print(f"select {self.args.comp_idx}-th comp.")
# to [0, 1]
self_attn = (self_attn - self_attn.min()) / (self_attn.max() - self_attn.min())
# visual final self-attention
self_attn_vis = np.copy(self_attn)
self_attn_vis = self_attn_vis * 255
self_attn_vis = np.repeat(np.expand_dims(self_attn_vis, axis=2), 3, axis=2).astype(np.uint8)
view_images(self_attn_vis, save_image=True, fp=self.results_path / "self-attn-final.png")
"""attention map fusion"""
attn_map = self.args.attn_coeff * cross_attn_map + (1 - self.args.attn_coeff) * self_attn
# to [0, 1]
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
self.print(f"-> fusion attn_map: {attn_map.shape}")
else:
attn_map = None
return target_file.as_posix(), attn_map
@property
def clip_norm_(self):
return transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
def clip_pair_augment(self,
x: torch.Tensor,
y: torch.Tensor,
im_res: int,
augments: str = "affine_norm",
num_aug: int = 4):
# init augmentations
augment_list = []
if "affine" in augments:
augment_list.append(
transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5)
)
augment_list.append(
transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0))
)
augment_list.append(self.clip_norm_) # CLIP Normalize
# compose augmentations
augment_compose = transforms.Compose(augment_list)
# make augmentation pairs
x_augs, y_augs = [self.clip_score_fn.normalize(x)], [self.clip_score_fn.normalize(y)]
# repeat N times
for n in range(num_aug):
augmented_pair = augment_compose(torch.cat([x, y]))
x_augs.append(augmented_pair[0].unsqueeze(0))
y_augs.append(augmented_pair[1].unsqueeze(0))
xs = torch.cat(x_augs, dim=0)
ys = torch.cat(y_augs, dim=0)
return xs, ys
def painterly_rendering(self, prompts, token_ind, changing_region_words, reweight_word, reweight_weight):
# log prompts
self.print(f"prompts: {prompts}")
self.print(f"negative_prompt: {self.args.negative_prompt}")
self.print(f"token_ind: {token_ind}")
self.print(f"changing_region_words: {changing_region_words}")
self.print(f"reweight_word: {reweight_word}")
self.print(f"reweight_weight: {reweight_weight}\n")
if self.args.negative_prompt is None:
self.args.negative_prompt = ""
log_path = os.path.join(self.results_path.as_posix(), 'log.txt')
with open(log_path, "w") as f:
f.write("prompts: " + str(prompts) + "\n")
f.write("negative_prompt: " + self.args.negative_prompt + "\n")
f.write("token_ind: " + str(token_ind) + "\n")
f.write("changing_region_words: " + str(changing_region_words) + "\n")
f.write("reweight_word: " + str(reweight_word) + "\n")
f.write("reweight_weight: " + str(reweight_weight) + "\n")
f.close()
# init attention
if self.args.run_stage == 0:
target_file, attention_map = self.extract_ldm_attn(prompts, token_ind, changing_region_words,
reweight_word, reweight_weight)
else:
results_base = self.results_path.as_posix()
target_file = os.path.join(results_base[:results_base.find('stage=' + str(self.args.run_stage))] + 'stage=0', "ldm_generated_image" + str(self.args.run_stage) + ".png")
attention_map = None
if not self.args.sd_image_only:
# timesteps_ = self.diffusion.scheduler.timesteps.cpu().numpy().tolist()
# self.print(f"{len(timesteps_)} denoising steps, {timesteps_}")
perceptual_loss_fn = None
if self.args.perceptual.coeff > 0:
if self.args.perceptual.name == "lpips":
lpips_loss_fn = LPIPS(net=self.args.perceptual.lpips_net).to(self.device)
perceptual_loss_fn = partial(lpips_loss_fn.forward, return_per_layer=False, normalize=False)
elif self.args.perceptual.name == "dists":
perceptual_loss_fn = DISTS_PIQ()
inputs, mask = self.get_target(target_file,
self.args.image_size,
self.results_path,
self.args.u2net_path,
self.args.mask_object,
self.args.fix_scale,
self.device)
inputs = inputs.detach() # inputs as GT
self.print("inputs shape: ", inputs.shape)
# load renderer
renderer = Painter(self.args,
num_strokes=self.args.num_paths,
num_segments=self.args.num_segments,
imsize=self.args.image_size,
device=self.device,
target_im=inputs,
attention_map=attention_map,
mask=mask,
results_base=self.results_path.as_posix())
# init img
img = renderer.init_image(stage=0)
self.print("init_image shape: ", img.shape)
log_tensor_img(img, self.results_path, output_prefix="init_sketch")
# load optimizer
optimizer = SketchPainterOptimizer(renderer,
self.args.lr,
self.args.optim_opacity,
self.args.optim_rgba,
self.args.color_lr,
self.args.optim_width,
self.args.width_lr)
optimizer.init_optimizers()
# log params
self.print(f"-> Painter points Params: {len(renderer.get_points_params())}")
self.print(f"-> Painter width Params: {len(renderer.get_width_parameters())}")
self.print(f"-> Painter opacity Params: {len(renderer.get_color_parameters())}")
best_visual_loss, best_semantic_loss = 100, 100
best_iter_v, best_iter_s = 0, 0
min_delta = 1e-6
vid_idx = 1
self.print(f"\ntotal optimization steps: {self.args.num_iter}")
with tqdm(initial=self.step, total=self.args.num_iter, disable=not self.accelerator.is_main_process) as pbar:
while self.step < self.args.num_iter:
raster_sketch = renderer.get_image().to(self.device)
target_prompt = prompts[self.args.run_stage]
# ASDS loss
sds_loss, grad = torch.tensor(0), torch.tensor(0)
if self.step >= self.args.sds.warmup:
grad_scale = self.args.sds.grad_scale if self.step > self.args.sds.warmup else 0
sds_loss, grad = self.diffusion.score_distillation_sampling(
raster_sketch,
crop_size=self.args.sds.crop_size,
augments=self.args.sds.augmentations,
prompt=[target_prompt],
negative_prompt=[self.args.negative_prompt],
guidance_scale=self.args.sds.guidance_scale,
grad_scale=grad_scale,
t_range=list(self.args.sds.t_range),
)
# CLIP data augmentation
raster_sketch_aug, inputs_aug = self.clip_pair_augment(
raster_sketch, inputs,
im_res=224,
augments=self.cargs.augmentations,
num_aug=self.cargs.num_aug
)
# raster_sketch: (1, 3, 224, 224), [0, 1]
# inputs: (1, 3, 224, 224), [0, 1]
# raster_sketch_aug: (5, 3, 224, 224), [2+, -1.7]
# inputs_aug: (5, 3, 224, 224), [2+, -1.7]
# clip visual loss
total_visual_loss = torch.tensor(0)
l_clip_fc, l_clip_conv, clip_conv_loss_sum = torch.tensor(0), [], torch.tensor(0)
if self.args.clip.vis_loss > 0:
l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance(
raster_sketch_aug, inputs_aug, clip_norm=False
)
clip_conv_loss_sum = sum(l_clip_conv)
total_visual_loss = self.args.clip.vis_loss * (clip_conv_loss_sum + l_clip_fc)
# perceptual loss
l_percep = torch.tensor(0.)
if perceptual_loss_fn is not None:
l_perceptual = perceptual_loss_fn(raster_sketch, inputs).mean()
l_percep = l_perceptual * self.args.perceptual.coeff
# text-visual loss
l_tvd = torch.tensor(0.)
if self.cargs.text_visual_coeff > 0:
l_tvd = self.clip_score_fn.compute_text_visual_distance(
raster_sketch_aug, target_prompt
) * self.cargs.text_visual_coeff
# total loss
loss = sds_loss + total_visual_loss + l_percep + l_tvd
# optimization
optimizer.zero_grad_()
loss.backward()
optimizer.step_()
# if self.step % self.args.pruning_freq == 0:
# renderer.path_pruning()
# update lr
if self.args.lr_scheduler:
optimizer.update_lr(self.step, self.args.lr, self.args.decay_steps)
# records
pbar.set_description(
f"lr: {optimizer.get_lr():.2f}, "
f"l_total: {loss.item():.4f}, "
f"l_clip_fc: {l_clip_fc.item():.4f}, "
f"l_clip_conv({len(l_clip_conv)}): {clip_conv_loss_sum.item():.4f}, "
f"l_tvd: {l_tvd.item():.4f}, "
f"l_percep: {l_percep.item():.4f}, "
f"sds: {grad.item():.4e}"
)
# log video
if self.args.make_video and (self.step % self.args.video_frame_freq == 0) \
and self.accelerator.is_main_process:
log_tensor_img(raster_sketch, output_dir=self.png_logs_dir,
output_prefix=f'frame{vid_idx}', dpi=100)
vid_idx += 1
# log raster and svg
if self.step % self.args.save_step == 0 and self.accelerator.is_main_process:
# log png
plt_batch(inputs,
raster_sketch,
self.step,
target_prompt,
save_path=self.png_logs_dir.as_posix(),
name=f"iter{self.step}")
# log svg
renderer.save_svg(self.svg_logs_dir.as_posix(), f"svg_iter{self.step}")
# log cross attn
if self.args.log_cross_attn:
controller = AttentionStore()
_, _ = self.diffusion.get_cross_attention([target_prompt],
controller,
res=self.args.cross_attn_res,
from_where=("up", "down"),
save_path=self.attn_logs_dir / f"iter{self.step}.png")
# logging the best raster images and SVG
if self.step % self.args.eval_step == 0 and self.accelerator.is_main_process:
with torch.no_grad():
# visual metric
l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance(
raster_sketch_aug, inputs_aug, clip_norm=False
)
loss_eval = sum(l_clip_conv) + l_clip_fc
cur_delta = loss_eval.item() - best_visual_loss
if abs(cur_delta) > min_delta and cur_delta < 0:
best_visual_loss = loss_eval.item()
best_iter_v = self.step
plt_batch(inputs,
raster_sketch,
best_iter_v,
target_prompt,
save_path=self.results_path.as_posix(),
name="visual_best")
renderer.save_svg(self.results_path.as_posix(), "visual_best")
# semantic metric
loss_eval = self.clip_score_fn.compute_text_visual_distance(
raster_sketch_aug, target_prompt
)
cur_delta = loss_eval.item() - best_semantic_loss
if abs(cur_delta) > min_delta and cur_delta < 0:
best_semantic_loss = loss_eval.item()
best_iter_s = self.step
plt_batch(inputs,
raster_sketch,
best_iter_s,
target_prompt,
save_path=self.results_path.as_posix(),
name="semantic_best")
renderer.save_svg(self.results_path.as_posix(), "semantic_best")
# log attention
if self.step == 0 and self.args.attention_init and self.accelerator.is_main_process:
plt_attn(renderer.get_attn(),
renderer.get_thresh(),
inputs,
renderer.get_inds(),
(self.results_path / "attention_map.jpg").as_posix())
self.step += 1
pbar.update(1)
# saving final svg
renderer.save_svg(self.svg_logs_dir.as_posix(), "final_svg_tmp")
# stroke pruning
if self.args.opacity_delta != 0:
remove_low_opacity_paths(self.svg_logs_dir / "final_svg_tmp.svg",
self.results_path / "final_svg.svg",
self.args.opacity_delta)
# save raster img
final_raster_sketch = renderer.get_image().to(self.device)
save_tensor_img(final_raster_sketch,
save_path=self.results_path,
name='final_render')
# convert the intermediate renderings to a video
if self.args.make_video:
from subprocess import call
call([
"ffmpeg",
"-framerate", 24,
"-i", (self.png_logs_dir / "frame%d.png").as_posix(),
"-vb", "20M",
(self.results_path / "out.mp4").as_posix()
])
# self.close(msg="painterly rendering complete.")
def get_target(self,
target_file,
image_size,
output_dir,
u2net_path,
mask_object,
fix_scale,
device):
if not is_image_file(target_file):
raise TypeError(f"{target_file} is not image file.")
target = Image.open(target_file)
if target.mode == "RGBA":
# Create a white rgba background
new_image = Image.new("RGBA", target.size, "WHITE")
# Paste the image on the background.
new_image.paste(target, (0, 0), target)
target = new_image
target = target.convert("RGB")
# U2Net mask
mask = target
if mask_object:
if pathlib.Path(u2net_path).exists():
masked_im, mask = get_mask_u2net(target, output_dir, u2net_path, device)
target = masked_im
else:
self.print(f"'{u2net_path}' is not exist, disable mask target")
if fix_scale:
target = fix_image_scale(target)
# define image transforms
transforms_ = []
if target.size[0] != target.size[1]:
transforms_.append(transforms.Resize((image_size, image_size)))
else:
transforms_.append(transforms.Resize(image_size))
transforms_.append(transforms.CenterCrop(image_size))
transforms_.append(transforms.ToTensor())
# preprocess
data_transforms = transforms.Compose(transforms_)
target_ = data_transforms(target).unsqueeze(0).to(self.device)
return target_, mask
|