File size: 34,567 Bytes
7aefe45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import os
import pathlib
from PIL import Image
from functools import partial

import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets.folder import is_image_file
from tqdm.auto import tqdm
import numpy as np
from skimage.color import rgb2gray
import diffusers

from libs.engine import ModelState
from libs.metric.lpips_origin import LPIPS
from libs.metric.piq.perceptual import DISTS as DISTS_PIQ
from libs.metric.clip_score import CLIPScoreWrapper
from methods.painter.diffsketchedit import (
    Painter, SketchPainterOptimizer, Token2AttnMixinASDSPipeline, Token2AttnMixinASDSSDXLPipeline)
from methods.painter.diffsketchedit.sketch_utils import (
    log_tensor_img, plt_batch, plt_attn, save_tensor_img, fix_image_scale)
from methods.painter.diffsketchedit.mask_utils import get_mask_u2net
from methods.token2attn.attn_control import AttentionStore, EmptyControl, \
    LocalBlend, AttentionReplace, AttentionRefine, AttentionReweight, get_equalizer
from methods.token2attn.ptp_utils import view_images, get_word_inds
from methods.diffusers_warp import init_diffusion_pipeline, model2res
from methods.diffvg_warp import init_diffvg
from methods.painter.diffsketchedit.process_svg import remove_low_opacity_paths


class DiffSketchEditPipeline(ModelState):
    def __init__(self, args):
        super().__init__(args, ignore_log=True)

        init_diffvg(self.device, True, args.print_timing)

        if args.model_id == "sdxl":
            # default LSDSSDXLPipeline scheduler is EulerDiscreteScheduler
            # when LSDSSDXLPipeline calls, scheduler.timesteps will change in step 4
            # which causes problem in sds add_noise() function
            # because the random t may not in scheduler.timesteps
            custom_pipeline = Token2AttnMixinASDSSDXLPipeline
            custom_scheduler = diffusers.DPMSolverMultistepScheduler
            self.args.cross_attn_res = self.args.cross_attn_res * 2
        elif args.model_id == 'sd21':
            custom_pipeline = Token2AttnMixinASDSPipeline
            custom_scheduler = diffusers.DDIMScheduler
        elif args.model_id == 'sd15':
            custom_pipeline = Token2AttnMixinASDSPipeline
            custom_scheduler = diffusers.DDIMScheduler
        else:  # sd14
            custom_pipeline = Token2AttnMixinASDSPipeline
            custom_scheduler = None

        self.diffusion = init_diffusion_pipeline(
            self.args.model_id,
            custom_pipeline=custom_pipeline,
            custom_scheduler=custom_scheduler,
            device=self.device,
            local_files_only=not args.download,
            force_download=args.force_download,
            resume_download=args.resume_download,
            ldm_speed_up=args.ldm_speed_up,
            enable_xformers=args.enable_xformers,
            gradient_checkpoint=args.gradient_checkpoint,
        )

        # init clip model and clip score wrapper
        self.cargs = self.args.clip
        self.clip_score_fn = CLIPScoreWrapper(self.cargs.model_name,
                                              device=self.device,
                                              visual_score=True,
                                              feats_loss_type=self.cargs.feats_loss_type,
                                              feats_loss_weights=self.cargs.feats_loss_weights,
                                              fc_loss_weight=self.cargs.fc_loss_weight)

    def update_info(self, seed, token_ind, prompt_input):
        prompt_dir_name = prompt_input.split(' ')
        prompt_dir_name = '_'.join(prompt_dir_name)

        attn_log_ = f"-tk{token_ind}"
        logdir_ = f"seed{seed}" \
                  f"{attn_log_}" \
                  f"-stage={self.args.run_stage}"
        logdir_sec_ = f""
        self.args.path_svg = ""

        if self.args.run_stage > 0:
            logdir_sec_ = f"{logdir_sec_}-local={self.args.vector_local_edit}"
            last_svg_base = os.path.join(self.args.results_path, self.args.edit_type, prompt_dir_name, logdir_[:-1] + str(self.args.run_stage - 1))
            if self.args.run_stage != 1:
                last_svg_base += logdir_sec_
            self.args.path_svg = os.path.join(last_svg_base, "visual_best.svg")
            self.args.attention_init = False

        logdir_ = f"{prompt_dir_name}" + f"/" + logdir_ + logdir_sec_
        super().__init__(self.args, log_path_suffix=logdir_)

        # create log dir
        self.png_logs_dir = self.results_path / "png_logs"
        self.svg_logs_dir = self.results_path / "svg_logs"
        self.attn_logs_dir = self.results_path / "attn_logs"
        if self.accelerator.is_main_process:
            self.png_logs_dir.mkdir(parents=True, exist_ok=True)
            self.svg_logs_dir.mkdir(parents=True, exist_ok=True)
            self.attn_logs_dir.mkdir(parents=True, exist_ok=True)

        self.g_device = torch.Generator().manual_seed(seed)

    def load_render(self, target_img, attention_map, mask=None):
        renderer = Painter(self.args,
                           num_strokes=self.args.num_paths,
                           num_segments=self.args.num_segments,
                           imsize=self.args.image_size,
                           device=self.device,
                           target_im=target_img,
                           attention_map=attention_map,
                           mask=mask)
        return renderer

    def attn_map_normalizing(self, cross_attn_map):
        cross_attn_map = 255 * cross_attn_map / cross_attn_map.max()
        # [res, res, 3]
        cross_attn_map = cross_attn_map.unsqueeze(-1).expand(*cross_attn_map.shape, 3)
        # [3, res, res]
        cross_attn_map = cross_attn_map.permute(2, 0, 1).unsqueeze(0)
        # [3, clip_size, clip_size]
        cross_attn_map = F.interpolate(cross_attn_map, size=self.args.image_size, mode='bicubic')
        cross_attn_map = torch.clamp(cross_attn_map, min=0, max=255)
        # rgb to gray
        cross_attn_map = rgb2gray(cross_attn_map.squeeze(0).permute(1, 2, 0)).astype(np.float32)
        # torch to numpy
        if cross_attn_map.shape[-1] != self.args.image_size and cross_attn_map.shape[-2] != self.args.image_size:
            cross_attn_map = cross_attn_map.reshape(self.args.image_size, self.args.image_size)
        # to [0, 1]
        cross_attn_map = (cross_attn_map - cross_attn_map.min()) / (cross_attn_map.max() - cross_attn_map.min())
        return cross_attn_map

    def compute_local_edit_maps(self, cross_attn_maps_src_tar, prompts, words, save_path, threshold=0.3):
        """
        cross_attn_maps_src_tar: [(res, res, 77), (res, res, 77)]
        """
        local_edit_region = np.zeros(shape=(self.args.image_size, self.args.image_size), dtype=np.float32)
        for i, (prompt, word) in enumerate(zip(prompts, words)):
            ind = get_word_inds(prompt, word, self.diffusion.tokenizer)  # list
            assert len(ind) == 1
            ind = ind[0]

            cross_attn_map = cross_attn_maps_src_tar[i][:, :, ind]  # (res, res)
            cross_attn_map = self.attn_map_normalizing(cross_attn_map)  # (image_size, image_size), [0.0, 1.0]
            cross_attn_map_bin = cross_attn_map >= threshold
            local_edit_region += cross_attn_map_bin
        local_edit_region = (np.clip(local_edit_region, 0, 1) * 255).astype(np.uint8)
        local_edit_region = Image.fromarray(local_edit_region, 'L')
        local_edit_region.save(save_path, 'PNG')

    def extract_ldm_attn(self, prompts, token_ind, changing_region_words, reweight_word, reweight_weight):
        ######################### Change here for editing methods #########################
        ## init controller
        if not self.args.attention_init:
            controller = EmptyControl()
        else:
            lb = LocalBlend(prompts=prompts,
                            words=changing_region_words, tokenizer=self.diffusion.tokenizer,
                            device=self.device)  # changing region
            # if self.args.edit_type == "none":
            #     controller = AttentionStore()
            if self.args.edit_type == "replace":
                controller = AttentionReplace(prompts=prompts,
                                              num_steps=self.args.num_inference_steps,
                                              cross_replace_steps=0.4,  # larger is more similar shape
                                              self_replace_steps=0.4,
                                              local_blend=lb,
                                              tokenizer=self.diffusion.tokenizer,
                                              device=self.device)
            elif self.args.edit_type == "refine":
                controller = AttentionRefine(prompts=prompts,
                                             num_steps=self.args.num_inference_steps,
                                             cross_replace_steps=0.8,  # larger is more similar shape
                                             self_replace_steps=0.4,
                                             local_blend=lb,
                                             tokenizer=self.diffusion.tokenizer,
                                             device=self.device)
            elif self.args.edit_type == "reweight":
                equalizer = get_equalizer(self.diffusion.tokenizer, prompts[1:],
                                          reweight_word, reweight_weight)
                controller = AttentionReweight(prompts=prompts,
                                               num_steps=self.args.num_inference_steps,
                                               cross_replace_steps=0.8,  # larger is more similar shape
                                               self_replace_steps=0.4,
                                               local_blend=lb,
                                               equalizer=equalizer,
                                               # controller=controller_a,
                                               tokenizer=self.diffusion.tokenizer,
                                               device=self.device)
            else:
                raise Exception('Unknown edit_type:', self.args.edit_type)

        ######################### Change here for editing methods (end) #########################

        height = width = model2res(self.args.model_id)
        outputs = self.diffusion(prompt=prompts,
                                 negative_prompt=[self.args.negative_prompt] * len(prompts),
                                 height=height,
                                 width=width,
                                 controller=controller,
                                 num_inference_steps=self.args.num_inference_steps,
                                 guidance_scale=self.args.guidance_scale,
                                 generator=self.g_device)

        print('outputs.images', len(outputs.images))
        for ii, img in enumerate(outputs.images):
            if ii == 0:
                filename = "ldm_generated_image.png"
                target_file = self.results_path / filename
            else:
                filename = "ldm_generated_image" + str(ii) + ".png"

            target_file_tmp = self.results_path / filename
            view_images([np.array(img)], save_image=True, fp=target_file_tmp)

        if self.args.attention_init:
            """ldm cross-attention map"""
            cross_attention_maps, tokens = \
                self.diffusion.get_cross_attention(prompts,
                                                   controller,
                                                   res=self.args.cross_attn_res,
                                                   from_where=("up", "down"),
                                                   save_path=self.results_path / "cross_attn.png",
                                                   select=0)
            for ii in range(1, len(outputs.images)):
                cross_attn_png_name = "cross_attn" + str(ii) + ".png"
                cross_attention_maps_i, tokens_i = \
                    self.diffusion.get_cross_attention(prompts,
                                                       controller,
                                                       res=self.args.cross_attn_res,
                                                       from_where=("up", "down"),
                                                       save_path=self.results_path / cross_attn_png_name,
                                                       select=ii)

            self.print(f"the length of tokens is {len(tokens)}, select {token_ind}-th token")
            # [res, res, seq_len]
            self.print(f"origin cross_attn_map shape: {cross_attention_maps.shape}")
            # [res, res]
            cross_attn_map = cross_attention_maps[:, :, token_ind]
            self.print(f"select cross_attn_map shape: {cross_attn_map.shape}\n")
            cross_attn_map = self.attn_map_normalizing(cross_attn_map)

            ######################### ldm cross-attention map (for vector local editing) #########################
            cross_attention_maps_local_list = []
            for ii in range(len(outputs.images)):
                cross_attention_maps_local = \
                    self.diffusion.get_cross_attention2(prompts,
                                                        controller,
                                                        res=self.args.vector_local_edit_attn_res,
                                                        from_where=("up", "down"),
                                                        select=ii)  # (res, res, 77)
                cross_attention_maps_local_list.append(cross_attention_maps_local)

                if ii == 0:
                    continue

                save_name = "cross_attn_local_edit_" + str(self.args.vector_local_edit_attn_res) + "-" + str(ii) + ".png"

                if self.args.edit_type == "replace":
                    self.compute_local_edit_maps([cross_attention_maps_local_list[ii-1]], [prompts[ii-1]], [changing_region_words[ii][0]],
                                                 save_path=self.results_path / save_name,
                                                 threshold=self.args.vector_local_edit_bin_threshold_replace)
                elif self.args.edit_type == "refine":
                    self.compute_local_edit_maps([cross_attention_maps_local_list[ii]], [prompts[ii]], [changing_region_words[ii][1]],
                                                 save_path=self.results_path / save_name,
                                                 threshold=self.args.vector_local_edit_bin_threshold_refine)
                elif self.args.edit_type == "reweight":
                    self.compute_local_edit_maps([cross_attention_maps_local_list[ii-1]], [prompts[ii-1]], [changing_region_words[ii][0]],
                                                 save_path=self.results_path / save_name,
                                                 threshold=self.args.vector_local_edit_bin_threshold_reweight)

            if self.args.sd_image_only:
                return target_file.as_posix(), None

            #########################  #########################

            """ldm self-attention map"""
            self_attention_maps, svd, vh_ = \
                self.diffusion.get_self_attention_comp(prompts,
                                                       controller,
                                                       res=self.args.self_attn_res,
                                                       from_where=("up", "down"),
                                                       img_size=self.args.image_size,
                                                       max_com=self.args.max_com,
                                                       save_path=self.results_path)

            # comp self-attention map
            if self.args.mean_comp:
                self_attn = np.mean(vh_, axis=0)
                self.print(f"use the mean of {self.args.max_com} comps.")
            else:
                self_attn = vh_[self.args.comp_idx]
                self.print(f"select {self.args.comp_idx}-th comp.")
            # to [0, 1]
            self_attn = (self_attn - self_attn.min()) / (self_attn.max() - self_attn.min())
            # visual final self-attention
            self_attn_vis = np.copy(self_attn)
            self_attn_vis = self_attn_vis * 255
            self_attn_vis = np.repeat(np.expand_dims(self_attn_vis, axis=2), 3, axis=2).astype(np.uint8)
            view_images(self_attn_vis, save_image=True, fp=self.results_path / "self-attn-final.png")

            """attention map fusion"""
            attn_map = self.args.attn_coeff * cross_attn_map + (1 - self.args.attn_coeff) * self_attn
            # to [0, 1]
            attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())

            self.print(f"-> fusion attn_map: {attn_map.shape}")
        else:
            attn_map = None

        return target_file.as_posix(), attn_map

    @property
    def clip_norm_(self):
        return transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))

    def clip_pair_augment(self,
                          x: torch.Tensor,
                          y: torch.Tensor,
                          im_res: int,
                          augments: str = "affine_norm",
                          num_aug: int = 4):
        # init augmentations
        augment_list = []
        if "affine" in augments:
            augment_list.append(
                transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5)
            )
            augment_list.append(
                transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0))
            )
        augment_list.append(self.clip_norm_)  # CLIP Normalize

        # compose augmentations
        augment_compose = transforms.Compose(augment_list)
        # make augmentation pairs
        x_augs, y_augs = [self.clip_score_fn.normalize(x)], [self.clip_score_fn.normalize(y)]
        # repeat N times
        for n in range(num_aug):
            augmented_pair = augment_compose(torch.cat([x, y]))
            x_augs.append(augmented_pair[0].unsqueeze(0))
            y_augs.append(augmented_pair[1].unsqueeze(0))
        xs = torch.cat(x_augs, dim=0)
        ys = torch.cat(y_augs, dim=0)
        return xs, ys

    def painterly_rendering(self, prompts, token_ind, changing_region_words, reweight_word, reweight_weight):
        # log prompts
        self.print(f"prompts: {prompts}")
        self.print(f"negative_prompt: {self.args.negative_prompt}")
        self.print(f"token_ind: {token_ind}")
        self.print(f"changing_region_words: {changing_region_words}")
        self.print(f"reweight_word: {reweight_word}")
        self.print(f"reweight_weight: {reweight_weight}\n")
        if self.args.negative_prompt is None:
            self.args.negative_prompt = ""

        log_path = os.path.join(self.results_path.as_posix(), 'log.txt')
        with open(log_path, "w") as f:
            f.write("prompts: " + str(prompts) + "\n")
            f.write("negative_prompt: " + self.args.negative_prompt + "\n")
            f.write("token_ind: " + str(token_ind) + "\n")
            f.write("changing_region_words: " + str(changing_region_words) + "\n")
            f.write("reweight_word: " + str(reweight_word) + "\n")
            f.write("reweight_weight: " + str(reweight_weight) + "\n")
            f.close()

        # init attention
        if self.args.run_stage == 0:
            target_file, attention_map = self.extract_ldm_attn(prompts, token_ind, changing_region_words,
                                                               reweight_word, reweight_weight)
        else:
            results_base = self.results_path.as_posix()
            target_file = os.path.join(results_base[:results_base.find('stage=' + str(self.args.run_stage))] + 'stage=0', "ldm_generated_image" + str(self.args.run_stage) + ".png")
            attention_map = None

        if not self.args.sd_image_only:
            # timesteps_ = self.diffusion.scheduler.timesteps.cpu().numpy().tolist()
            # self.print(f"{len(timesteps_)} denoising steps, {timesteps_}")

            perceptual_loss_fn = None
            if self.args.perceptual.coeff > 0:
                if self.args.perceptual.name == "lpips":
                    lpips_loss_fn = LPIPS(net=self.args.perceptual.lpips_net).to(self.device)
                    perceptual_loss_fn = partial(lpips_loss_fn.forward, return_per_layer=False, normalize=False)
                elif self.args.perceptual.name == "dists":
                    perceptual_loss_fn = DISTS_PIQ()

            inputs, mask = self.get_target(target_file,
                                           self.args.image_size,
                                           self.results_path,
                                           self.args.u2net_path,
                                           self.args.mask_object,
                                           self.args.fix_scale,
                                           self.device)
            inputs = inputs.detach()  # inputs as GT
            self.print("inputs shape: ", inputs.shape)

            # load renderer
            renderer = Painter(self.args,
                               num_strokes=self.args.num_paths,
                               num_segments=self.args.num_segments,
                               imsize=self.args.image_size,
                               device=self.device,
                               target_im=inputs,
                               attention_map=attention_map,
                               mask=mask,
                               results_base=self.results_path.as_posix())

            # init img
            img = renderer.init_image(stage=0)
            self.print("init_image shape: ", img.shape)
            log_tensor_img(img, self.results_path, output_prefix="init_sketch")
            # load optimizer
            optimizer = SketchPainterOptimizer(renderer,
                                               self.args.lr,
                                               self.args.optim_opacity,
                                               self.args.optim_rgba,
                                               self.args.color_lr,
                                               self.args.optim_width,
                                               self.args.width_lr)
            optimizer.init_optimizers()

            # log params
            self.print(f"-> Painter points Params: {len(renderer.get_points_params())}")
            self.print(f"-> Painter width Params: {len(renderer.get_width_parameters())}")
            self.print(f"-> Painter opacity Params: {len(renderer.get_color_parameters())}")

            best_visual_loss, best_semantic_loss = 100, 100
            best_iter_v, best_iter_s = 0, 0
            min_delta = 1e-6
            vid_idx = 1

            self.print(f"\ntotal optimization steps: {self.args.num_iter}")
            with tqdm(initial=self.step, total=self.args.num_iter, disable=not self.accelerator.is_main_process) as pbar:
                while self.step < self.args.num_iter:
                    raster_sketch = renderer.get_image().to(self.device)

                    target_prompt = prompts[self.args.run_stage]

                    # ASDS loss
                    sds_loss, grad = torch.tensor(0), torch.tensor(0)
                    if self.step >= self.args.sds.warmup:
                        grad_scale = self.args.sds.grad_scale if self.step > self.args.sds.warmup else 0
                        sds_loss, grad = self.diffusion.score_distillation_sampling(
                            raster_sketch,
                            crop_size=self.args.sds.crop_size,
                            augments=self.args.sds.augmentations,
                            prompt=[target_prompt],
                            negative_prompt=[self.args.negative_prompt],
                            guidance_scale=self.args.sds.guidance_scale,
                            grad_scale=grad_scale,
                            t_range=list(self.args.sds.t_range),
                        )

                    # CLIP data augmentation
                    raster_sketch_aug, inputs_aug = self.clip_pair_augment(
                        raster_sketch, inputs,
                        im_res=224,
                        augments=self.cargs.augmentations,
                        num_aug=self.cargs.num_aug
                    )
                    # raster_sketch: (1, 3, 224, 224), [0, 1]
                    # inputs: (1, 3, 224, 224), [0, 1]
                    # raster_sketch_aug: (5, 3, 224, 224), [2+, -1.7]
                    # inputs_aug: (5, 3, 224, 224), [2+, -1.7]

                    # clip visual loss
                    total_visual_loss = torch.tensor(0)
                    l_clip_fc, l_clip_conv, clip_conv_loss_sum = torch.tensor(0), [], torch.tensor(0)
                    if self.args.clip.vis_loss > 0:
                        l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance(
                            raster_sketch_aug, inputs_aug, clip_norm=False
                        )
                        clip_conv_loss_sum = sum(l_clip_conv)
                        total_visual_loss = self.args.clip.vis_loss * (clip_conv_loss_sum + l_clip_fc)

                    # perceptual loss
                    l_percep = torch.tensor(0.)
                    if perceptual_loss_fn is not None:
                        l_perceptual = perceptual_loss_fn(raster_sketch, inputs).mean()
                        l_percep = l_perceptual * self.args.perceptual.coeff

                    # text-visual loss
                    l_tvd = torch.tensor(0.)
                    if self.cargs.text_visual_coeff > 0:
                        l_tvd = self.clip_score_fn.compute_text_visual_distance(
                            raster_sketch_aug, target_prompt
                        ) * self.cargs.text_visual_coeff

                    # total loss
                    loss = sds_loss + total_visual_loss + l_percep + l_tvd

                    # optimization
                    optimizer.zero_grad_()
                    loss.backward()
                    optimizer.step_()

                    # if self.step % self.args.pruning_freq == 0:
                    #     renderer.path_pruning()

                    # update lr
                    if self.args.lr_scheduler:
                        optimizer.update_lr(self.step, self.args.lr, self.args.decay_steps)

                    # records
                    pbar.set_description(
                        f"lr: {optimizer.get_lr():.2f}, "
                        f"l_total: {loss.item():.4f}, "
                        f"l_clip_fc: {l_clip_fc.item():.4f}, "
                        f"l_clip_conv({len(l_clip_conv)}): {clip_conv_loss_sum.item():.4f}, "
                        f"l_tvd: {l_tvd.item():.4f}, "
                        f"l_percep: {l_percep.item():.4f}, "
                        f"sds: {grad.item():.4e}"
                    )

                    # log video
                    if self.args.make_video and (self.step % self.args.video_frame_freq == 0) \
                            and self.accelerator.is_main_process:
                        log_tensor_img(raster_sketch, output_dir=self.png_logs_dir,
                                       output_prefix=f'frame{vid_idx}', dpi=100)
                        vid_idx += 1

                    # log raster and svg
                    if self.step % self.args.save_step == 0 and self.accelerator.is_main_process:
                        # log png
                        plt_batch(inputs,
                                  raster_sketch,
                                  self.step,
                                  target_prompt,
                                  save_path=self.png_logs_dir.as_posix(),
                                  name=f"iter{self.step}")
                        # log svg
                        renderer.save_svg(self.svg_logs_dir.as_posix(), f"svg_iter{self.step}")

                        # log cross attn
                        if self.args.log_cross_attn:
                            controller = AttentionStore()
                            _, _ = self.diffusion.get_cross_attention([target_prompt],
                                                                      controller,
                                                                      res=self.args.cross_attn_res,
                                                                      from_where=("up", "down"),
                                                                      save_path=self.attn_logs_dir / f"iter{self.step}.png")

                    # logging the best raster images and SVG
                    if self.step % self.args.eval_step == 0 and self.accelerator.is_main_process:
                        with torch.no_grad():
                            # visual metric
                            l_clip_fc, l_clip_conv = self.clip_score_fn.compute_visual_distance(
                                raster_sketch_aug, inputs_aug, clip_norm=False
                            )
                            loss_eval = sum(l_clip_conv) + l_clip_fc

                            cur_delta = loss_eval.item() - best_visual_loss
                            if abs(cur_delta) > min_delta and cur_delta < 0:
                                best_visual_loss = loss_eval.item()
                                best_iter_v = self.step
                                plt_batch(inputs,
                                          raster_sketch,
                                          best_iter_v,
                                          target_prompt,
                                          save_path=self.results_path.as_posix(),
                                          name="visual_best")
                                renderer.save_svg(self.results_path.as_posix(), "visual_best")

                            # semantic metric
                            loss_eval = self.clip_score_fn.compute_text_visual_distance(
                                raster_sketch_aug, target_prompt
                            )
                            cur_delta = loss_eval.item() - best_semantic_loss
                            if abs(cur_delta) > min_delta and cur_delta < 0:
                                best_semantic_loss = loss_eval.item()
                                best_iter_s = self.step
                                plt_batch(inputs,
                                          raster_sketch,
                                          best_iter_s,
                                          target_prompt,
                                          save_path=self.results_path.as_posix(),
                                          name="semantic_best")
                                renderer.save_svg(self.results_path.as_posix(), "semantic_best")

                    # log attention
                    if self.step == 0 and self.args.attention_init and self.accelerator.is_main_process:
                        plt_attn(renderer.get_attn(),
                                 renderer.get_thresh(),
                                 inputs,
                                 renderer.get_inds(),
                                 (self.results_path / "attention_map.jpg").as_posix())

                    self.step += 1
                    pbar.update(1)

            # saving final svg
            renderer.save_svg(self.svg_logs_dir.as_posix(), "final_svg_tmp")
            # stroke pruning
            if self.args.opacity_delta != 0:
                remove_low_opacity_paths(self.svg_logs_dir / "final_svg_tmp.svg",
                                         self.results_path / "final_svg.svg",
                                         self.args.opacity_delta)

            # save raster img
            final_raster_sketch = renderer.get_image().to(self.device)
            save_tensor_img(final_raster_sketch,
                            save_path=self.results_path,
                            name='final_render')

            # convert the intermediate renderings to a video
            if self.args.make_video:
                from subprocess import call
                call([
                    "ffmpeg",
                    "-framerate", 24,
                    "-i", (self.png_logs_dir / "frame%d.png").as_posix(),
                    "-vb", "20M",
                    (self.results_path / "out.mp4").as_posix()
                ])

        # self.close(msg="painterly rendering complete.")

    def get_target(self,
                   target_file,
                   image_size,
                   output_dir,
                   u2net_path,
                   mask_object,
                   fix_scale,
                   device):
        if not is_image_file(target_file):
            raise TypeError(f"{target_file} is not image file.")

        target = Image.open(target_file)

        if target.mode == "RGBA":
            # Create a white rgba background
            new_image = Image.new("RGBA", target.size, "WHITE")
            # Paste the image on the background.
            new_image.paste(target, (0, 0), target)
            target = new_image
        target = target.convert("RGB")

        # U2Net mask
        mask = target
        if mask_object:
            if pathlib.Path(u2net_path).exists():
                masked_im, mask = get_mask_u2net(target, output_dir, u2net_path, device)
                target = masked_im
            else:
                self.print(f"'{u2net_path}' is not exist, disable mask target")

        if fix_scale:
            target = fix_image_scale(target)

        # define image transforms
        transforms_ = []
        if target.size[0] != target.size[1]:
            transforms_.append(transforms.Resize((image_size, image_size)))
        else:
            transforms_.append(transforms.Resize(image_size))
            transforms_.append(transforms.CenterCrop(image_size))
        transforms_.append(transforms.ToTensor())

        # preprocess
        data_transforms = transforms.Compose(transforms_)
        target_ = data_transforms(target).unsqueeze(0).to(self.device)

        return target_, mask