jrnold commited on
Commit
7e7d842
·
1 Parent(s): df69476

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.39 +/- 0.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d8eadfd48a0cb7bd12343cc1f312f8fe33f77c693b30a2d5d7badd62cf0a3e9
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f46ec82e940>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f46ec82b510>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674249156519793628,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEYYEP3agRT+RGCu/WInEv2VyQr/rDj+/P/qtPz+JKb+0pa6+LBm+Pm3g0D+pTbS9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]]",
60
+ "desired_goal": "[[ 0.5176707 0.7719797 -0.6683436 ]\n [-1.5354414 -0.759558 -0.7463214 ]\n [ 1.3591994 -0.66225046 -0.34110796]\n [ 0.3712858 1.6318489 -0.08803875]]",
61
+ "observation": "[[ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaki9vUwK2bzn8Ak+uJyxPavDCz5+s5w9TZOQvYBp/71S7Eo+vzgQvlu3gT1wGJE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.09242328 -0.02649417 0.13470803]\n [ 0.0867247 0.1364886 0.07651423]\n [-0.07059345 -0.12471294 0.19816712]\n [-0.14084147 0.063338 0.28338957]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0xQBTu/i5r+UhpRSlIwBbJRLMowBdJRHQKYPBo8IRiB1fZQoaAZoCWgPQwgiNlg4SbP0v5SGlFKUaBVLMmgWR0CmDsm9g4OudX2UKGgGaAloD0MIZCMQr+sX6r+UhpRSlGgVSzJoFkdApg6JoduHe3V9lChoBmgJaA9DCBcuq7AZ4OC/lIaUUpRoFUsyaBZHQKYOR8Jlar51fZQoaAZoCWgPQwgOMPMd/ETyv5SGlFKUaBVLMmgWR0CmEDQZ4wAVdX2UKGgGaAloD0MIBfwaSYLw9L+UhpRSlGgVSzJoFkdApg/3QID5kHV9lChoBmgJaA9DCOs3E9OFGPS/lIaUUpRoFUsyaBZHQKYPtx//ech1fZQoaAZoCWgPQwhNEkvK3efvv5SGlFKUaBVLMmgWR0CmD3UeEIw/dX2UKGgGaAloD0MIlstG5/wU9L+UhpRSlGgVSzJoFkdAphFZNTLntHV9lChoBmgJaA9DCI/FNqlobPK/lIaUUpRoFUsyaBZHQKYRHHYHxBp1fZQoaAZoCWgPQwjUYBqGj4juv5SGlFKUaBVLMmgWR0CmENxKxs2vdX2UKGgGaAloD0MI/wOsVbsm7r+UhpRSlGgVSzJoFkdAphCaed07sHV9lChoBmgJaA9DCKYpApzeRee/lIaUUpRoFUsyaBZHQKYSiJ+lTFV1fZQoaAZoCWgPQwhxPJ8B9Wbsv5SGlFKUaBVLMmgWR0CmEkvk7wKCdX2UKGgGaAloD0MI9Ix9ycZD/L+UhpRSlGgVSzJoFkdAphIL2YfGMnV9lChoBmgJaA9DCHbDtkWZjfi/lIaUUpRoFUsyaBZHQKYRydTYNAl1fZQoaAZoCWgPQwhdqWdBKK/3v5SGlFKUaBVLMmgWR0CmE7zPrv9cdX2UKGgGaAloD0MIePF+3H45/b+UhpRSlGgVSzJoFkdAphOAavRqoXV9lChoBmgJaA9DCARXeQJhZ/a/lIaUUpRoFUsyaBZHQKYTQDyOJch1fZQoaAZoCWgPQwjg9C7ej9vtv5SGlFKUaBVLMmgWR0CmEv4zi0fHdX2UKGgGaAloD0MIfxR15h4S/b+UhpRSlGgVSzJoFkdAphTi1uzhP3V9lChoBmgJaA9DCMfXnlkSoOq/lIaUUpRoFUsyaBZHQKYUph7Vrh11fZQoaAZoCWgPQwizCMVW0DT6v5SGlFKUaBVLMmgWR0CmFGX974SIdX2UKGgGaAloD0MIcqYJ20/G7r+UhpRSlGgVSzJoFkdAphQkF+uvEHV9lChoBmgJaA9DCF01zxH5LuW/lIaUUpRoFUsyaBZHQKYWDbQC0Wx1fZQoaAZoCWgPQwidLLXeb3T4v5SGlFKUaBVLMmgWR0CmFdD5CWu6dX2UKGgGaAloD0MI+WabG9OT77+UhpRSlGgVSzJoFkdAphWQ8W9DhXV9lChoBmgJaA9DCBeBsb6Bifi/lIaUUpRoFUsyaBZHQKYVTshxHXp1fZQoaAZoCWgPQwihLedSXBX5v5SGlFKUaBVLMmgWR0CmFzX9BKL9dX2UKGgGaAloD0MIRl1r71OV8r+UhpRSlGgVSzJoFkdAphb5RbbDdnV9lChoBmgJaA9DCE87/DVZI+2/lIaUUpRoFUsyaBZHQKYWuPbwjMV1fZQoaAZoCWgPQwi37uapDjnvv5SGlFKUaBVLMmgWR0CmFnb0WdmQdX2UKGgGaAloD0MI7NtJRPiX8r+UhpRSlGgVSzJoFkdAphhVyNn5BXV9lChoBmgJaA9DCJ7Swfo/h+2/lIaUUpRoFUsyaBZHQKYYGNHYpUh1fZQoaAZoCWgPQwgqyqXxC08BwJSGlFKUaBVLMmgWR0CmF9iOvMbFdX2UKGgGaAloD0MIdQDEXb2K7b+UhpRSlGgVSzJoFkdApheWRmseXHV9lChoBmgJaA9DCP6ABwYQvvG/lIaUUpRoFUsyaBZHQKYZkc5sCT51fZQoaAZoCWgPQwg1XyUfu4v1v5SGlFKUaBVLMmgWR0CmGVTollbvdX2UKGgGaAloD0MI/DcvTnw1+L+UhpRSlGgVSzJoFkdAphkUqnWJ8HV9lChoBmgJaA9DCC8UsB2M2O2/lIaUUpRoFUsyaBZHQKYY0tkFwDN1fZQoaAZoCWgPQwj0Fg/vOXD2v5SGlFKUaBVLMmgWR0CmGrXEhq0udX2UKGgGaAloD0MILgPOUrJc8L+UhpRSlGgVSzJoFkdAphp46QvHtHV9lChoBmgJaA9DCEMAcOzZ8++/lIaUUpRoFUsyaBZHQKYaOLF4s3B1fZQoaAZoCWgPQwgwaCEBo0v8v5SGlFKUaBVLMmgWR0CmGfbUwztUdX2UKGgGaAloD0MIouvCD86n77+UhpRSlGgVSzJoFkdAphvbWbwz+HV9lChoBmgJaA9DCLNg4o+iTvG/lIaUUpRoFUsyaBZHQKYbno/zJ6p1fZQoaAZoCWgPQwgrbAa4IBv1v5SGlFKUaBVLMmgWR0CmG154GD+SdX2UKGgGaAloD0MIV89J7xtf5L+UhpRSlGgVSzJoFkdAphscZ3s5XHV9lChoBmgJaA9DCE7yI37FGgPAlIaUUpRoFUsyaBZHQKYc41c+qzZ1fZQoaAZoCWgPQwj0/dR46aYDwJSGlFKUaBVLMmgWR0CmHKZB9kSVdX2UKGgGaAloD0MIhxqFJLM697+UhpRSlGgVSzJoFkdAphxmIInjQ3V9lChoBmgJaA9DCMizy7c+rPK/lIaUUpRoFUsyaBZHQKYcJB1s+FF1fZQoaAZoCWgPQwjF5XgFomf5v5SGlFKUaBVLMmgWR0CmHgLkbPyDdX2UKGgGaAloD0MIEk92M6Of7L+UhpRSlGgVSzJoFkdAph3F72L5ynV9lChoBmgJaA9DCNk9eViotfa/lIaUUpRoFUsyaBZHQKYdhaN+9al1fZQoaAZoCWgPQwgCfo0kQTjqv5SGlFKUaBVLMmgWR0CmHUPECNjtdX2UKGgGaAloD0MIhetRuB6F7r+UhpRSlGgVSzJoFkdAph8SHVPN3XV9lChoBmgJaA9DCMhD393K0gLAlIaUUpRoFUsyaBZHQKYe1S0BwMp1fZQoaAZoCWgPQwgYYB+dunLuv5SGlFKUaBVLMmgWR0CmHpTkp7TldX2UKGgGaAloD0MI5iSUvhBSBMCUhpRSlGgVSzJoFkdAph5Sp71Iy3V9lChoBmgJaA9DCLQ+5ZgsLva/lIaUUpRoFUsyaBZHQKYgM/bCaZx1fZQoaAZoCWgPQwh7Z7RVSaT9v5SGlFKUaBVLMmgWR0CmH/csMAmzdX2UKGgGaAloD0MIh1Pm5hvxAcCUhpRSlGgVSzJoFkdAph+2qaPS2HV9lChoBmgJaA9DCIhmnlxToAPAlIaUUpRoFUsyaBZHQKYfdFjNILB1fZQoaAZoCWgPQwhK8fEJ2VkDwJSGlFKUaBVLMmgWR0CmITKzRhMKdX2UKGgGaAloD0MI51YIq7GkBcCUhpRSlGgVSzJoFkdApiD19Dx9X3V9lChoBmgJaA9DCBIvT+eK0v+/lIaUUpRoFUsyaBZHQKYgtZpSJj51fZQoaAZoCWgPQwi5NH7hlQQCwJSGlFKUaBVLMmgWR0CmIHNoJzDGdX2UKGgGaAloD0MIJCpUNxf/7r+UhpRSlGgVSzJoFkdApiJKzVtoBnV9lChoBmgJaA9DCCrJOhxdJQDAlIaUUpRoFUsyaBZHQKYiDgCwKSh1fZQoaAZoCWgPQwj1KjI6IMkCwJSGlFKUaBVLMmgWR0CmIc2uxKQJdX2UKGgGaAloD0MIDr4wmSrY97+UhpRSlGgVSzJoFkdApiGL17IDHXV9lChoBmgJaA9DCGMMrOP4Yf+/lIaUUpRoFUsyaBZHQKYjW4+8oQZ1fZQoaAZoCWgPQwjLDvEPW3ryv5SGlFKUaBVLMmgWR0CmIx7S7Xg+dX2UKGgGaAloD0MIHxSUopU7AsCUhpRSlGgVSzJoFkdApiLef029+XV9lChoBmgJaA9DCGtJRzmYbQHAlIaUUpRoFUsyaBZHQKYinE+gUUR1fZQoaAZoCWgPQwjoLomzIuoDwJSGlFKUaBVLMmgWR0CmJG+UQkHEdX2UKGgGaAloD0MIZeCAlq4g/L+UhpRSlGgVSzJoFkdApiQy0+kgwHV9lChoBmgJaA9DCM6KqIk+3/W/lIaUUpRoFUsyaBZHQKYj8scQyyl1fZQoaAZoCWgPQwj5LTpZaj3uv5SGlFKUaBVLMmgWR0CmI7DBMzuXdX2UKGgGaAloD0MI6spneR5c6b+UhpRSlGgVSzJoFkdApiWKUTtb93V9lChoBmgJaA9DCE5GlWHcDfm/lIaUUpRoFUsyaBZHQKYlTctXgcd1fZQoaAZoCWgPQwiBs5QsJ6H4v5SGlFKUaBVLMmgWR0CmJQ2TPjXGdX2UKGgGaAloD0MIQrXBiehX9r+UhpRSlGgVSzJoFkdApiTLijtXxXV9lChoBmgJaA9DCHtJY7SOKuq/lIaUUpRoFUsyaBZHQKYmq0/GEPF1fZQoaAZoCWgPQwg9KZMa2oDxv5SGlFKUaBVLMmgWR0CmJm5VOsT4dX2UKGgGaAloD0MIMEs7NZcb+r+UhpRSlGgVSzJoFkdApiYuDUVi4XV9lChoBmgJaA9DCBpvK702m+q/lIaUUpRoFUsyaBZHQKYl6/qxC6Z1fZQoaAZoCWgPQwjx8nSuKCX4v5SGlFKUaBVLMmgWR0CmJ8n1OCXhdX2UKGgGaAloD0MIQPomTYPi+7+UhpRSlGgVSzJoFkdApieNGd7OV3V9lChoBmgJaA9DCDblCu9ykem/lIaUUpRoFUsyaBZHQKYnTN/vv0B1fZQoaAZoCWgPQwiIEFfO3pkAwJSGlFKUaBVLMmgWR0CmJwrQokRjdX2UKGgGaAloD0MIbAVNS6yM67+UhpRSlGgVSzJoFkdApij2XzDn/3V9lChoBmgJaA9DCI3w9iAE5O2/lIaUUpRoFUsyaBZHQKYoucJ+lTF1fZQoaAZoCWgPQwjrAl5m2Cjwv5SGlFKUaBVLMmgWR0CmKHmw7kn1dX2UKGgGaAloD0MIQPuRIjLs+b+UhpRSlGgVSzJoFkdApig30RODa3V9lChoBmgJaA9DCL0A++jUlee/lIaUUpRoFUsyaBZHQKYqIicoYvZ1fZQoaAZoCWgPQwiPHOkMjDzvv5SGlFKUaBVLMmgWR0CmKeVct5D7dX2UKGgGaAloD0MINxlVhnG38L+UhpRSlGgVSzJoFkdApimlUCJXQ3V9lChoBmgJaA9DCJLNVfMcEfC/lIaUUpRoFUsyaBZHQKYpY1yeZoh1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c990b9867065fa346cc0d0d92623401cc10eedd4bd3735291ab2f330f8bed7d3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c34cfd121af2501ccaeb03b04b9f0ca1d948ab7e42e4aa3a4d75b7a4be3d4fb
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f46ec82e940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f46ec82b510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674249156519793628, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/GcjRPoMAjbzrMQY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEYYEP3agRT+RGCu/WInEv2VyQr/rDj+/P/qtPz+JKb+0pa6+LBm+Pm3g0D+pTbS9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDsZyNE+gwCNvOsxBj/lkyw80nswu9bAzDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]\n [ 0.40972975 -0.01721216 0.5241992 ]]", "desired_goal": "[[ 0.5176707 0.7719797 -0.6683436 ]\n [-1.5354414 -0.759558 -0.7463214 ]\n [ 1.3591994 -0.66225046 -0.34110796]\n [ 0.3712858 1.6318489 -0.08803875]]", "observation": "[[ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]\n [ 0.40972975 -0.01721216 0.5241992 0.01053331 -0.00269293 0.00624857]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaki9vUwK2bzn8Ak+uJyxPavDCz5+s5w9TZOQvYBp/71S7Eo+vzgQvlu3gT1wGJE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09242328 -0.02649417 0.13470803]\n [ 0.0867247 0.1364886 0.07651423]\n [-0.07059345 -0.12471294 0.19816712]\n [-0.14084147 0.063338 0.28338957]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0xQBTu/i5r+UhpRSlIwBbJRLMowBdJRHQKYPBo8IRiB1fZQoaAZoCWgPQwgiNlg4SbP0v5SGlFKUaBVLMmgWR0CmDsm9g4OudX2UKGgGaAloD0MIZCMQr+sX6r+UhpRSlGgVSzJoFkdApg6JoduHe3V9lChoBmgJaA9DCBcuq7AZ4OC/lIaUUpRoFUsyaBZHQKYOR8Jlar51fZQoaAZoCWgPQwgOMPMd/ETyv5SGlFKUaBVLMmgWR0CmEDQZ4wAVdX2UKGgGaAloD0MIBfwaSYLw9L+UhpRSlGgVSzJoFkdApg/3QID5kHV9lChoBmgJaA9DCOs3E9OFGPS/lIaUUpRoFUsyaBZHQKYPtx//ech1fZQoaAZoCWgPQwhNEkvK3efvv5SGlFKUaBVLMmgWR0CmD3UeEIw/dX2UKGgGaAloD0MIlstG5/wU9L+UhpRSlGgVSzJoFkdAphFZNTLntHV9lChoBmgJaA9DCI/FNqlobPK/lIaUUpRoFUsyaBZHQKYRHHYHxBp1fZQoaAZoCWgPQwjUYBqGj4juv5SGlFKUaBVLMmgWR0CmENxKxs2vdX2UKGgGaAloD0MI/wOsVbsm7r+UhpRSlGgVSzJoFkdAphCaed07sHV9lChoBmgJaA9DCKYpApzeRee/lIaUUpRoFUsyaBZHQKYSiJ+lTFV1fZQoaAZoCWgPQwhxPJ8B9Wbsv5SGlFKUaBVLMmgWR0CmEkvk7wKCdX2UKGgGaAloD0MI9Ix9ycZD/L+UhpRSlGgVSzJoFkdAphIL2YfGMnV9lChoBmgJaA9DCHbDtkWZjfi/lIaUUpRoFUsyaBZHQKYRydTYNAl1fZQoaAZoCWgPQwhdqWdBKK/3v5SGlFKUaBVLMmgWR0CmE7zPrv9cdX2UKGgGaAloD0MIePF+3H45/b+UhpRSlGgVSzJoFkdAphOAavRqoXV9lChoBmgJaA9DCARXeQJhZ/a/lIaUUpRoFUsyaBZHQKYTQDyOJch1fZQoaAZoCWgPQwjg9C7ej9vtv5SGlFKUaBVLMmgWR0CmEv4zi0fHdX2UKGgGaAloD0MIfxR15h4S/b+UhpRSlGgVSzJoFkdAphTi1uzhP3V9lChoBmgJaA9DCMfXnlkSoOq/lIaUUpRoFUsyaBZHQKYUph7Vrh11fZQoaAZoCWgPQwizCMVW0DT6v5SGlFKUaBVLMmgWR0CmFGX974SIdX2UKGgGaAloD0MIcqYJ20/G7r+UhpRSlGgVSzJoFkdAphQkF+uvEHV9lChoBmgJaA9DCF01zxH5LuW/lIaUUpRoFUsyaBZHQKYWDbQC0Wx1fZQoaAZoCWgPQwidLLXeb3T4v5SGlFKUaBVLMmgWR0CmFdD5CWu6dX2UKGgGaAloD0MI+WabG9OT77+UhpRSlGgVSzJoFkdAphWQ8W9DhXV9lChoBmgJaA9DCBeBsb6Bifi/lIaUUpRoFUsyaBZHQKYVTshxHXp1fZQoaAZoCWgPQwihLedSXBX5v5SGlFKUaBVLMmgWR0CmFzX9BKL9dX2UKGgGaAloD0MIRl1r71OV8r+UhpRSlGgVSzJoFkdAphb5RbbDdnV9lChoBmgJaA9DCE87/DVZI+2/lIaUUpRoFUsyaBZHQKYWuPbwjMV1fZQoaAZoCWgPQwi37uapDjnvv5SGlFKUaBVLMmgWR0CmFnb0WdmQdX2UKGgGaAloD0MI7NtJRPiX8r+UhpRSlGgVSzJoFkdAphhVyNn5BXV9lChoBmgJaA9DCJ7Swfo/h+2/lIaUUpRoFUsyaBZHQKYYGNHYpUh1fZQoaAZoCWgPQwgqyqXxC08BwJSGlFKUaBVLMmgWR0CmF9iOvMbFdX2UKGgGaAloD0MIdQDEXb2K7b+UhpRSlGgVSzJoFkdApheWRmseXHV9lChoBmgJaA9DCP6ABwYQvvG/lIaUUpRoFUsyaBZHQKYZkc5sCT51fZQoaAZoCWgPQwg1XyUfu4v1v5SGlFKUaBVLMmgWR0CmGVTollbvdX2UKGgGaAloD0MI/DcvTnw1+L+UhpRSlGgVSzJoFkdAphkUqnWJ8HV9lChoBmgJaA9DCC8UsB2M2O2/lIaUUpRoFUsyaBZHQKYY0tkFwDN1fZQoaAZoCWgPQwj0Fg/vOXD2v5SGlFKUaBVLMmgWR0CmGrXEhq0udX2UKGgGaAloD0MILgPOUrJc8L+UhpRSlGgVSzJoFkdAphp46QvHtHV9lChoBmgJaA9DCEMAcOzZ8++/lIaUUpRoFUsyaBZHQKYaOLF4s3B1fZQoaAZoCWgPQwgwaCEBo0v8v5SGlFKUaBVLMmgWR0CmGfbUwztUdX2UKGgGaAloD0MIouvCD86n77+UhpRSlGgVSzJoFkdAphvbWbwz+HV9lChoBmgJaA9DCLNg4o+iTvG/lIaUUpRoFUsyaBZHQKYbno/zJ6p1fZQoaAZoCWgPQwgrbAa4IBv1v5SGlFKUaBVLMmgWR0CmG154GD+SdX2UKGgGaAloD0MIV89J7xtf5L+UhpRSlGgVSzJoFkdAphscZ3s5XHV9lChoBmgJaA9DCE7yI37FGgPAlIaUUpRoFUsyaBZHQKYc41c+qzZ1fZQoaAZoCWgPQwj0/dR46aYDwJSGlFKUaBVLMmgWR0CmHKZB9kSVdX2UKGgGaAloD0MIhxqFJLM697+UhpRSlGgVSzJoFkdAphxmIInjQ3V9lChoBmgJaA9DCMizy7c+rPK/lIaUUpRoFUsyaBZHQKYcJB1s+FF1fZQoaAZoCWgPQwjF5XgFomf5v5SGlFKUaBVLMmgWR0CmHgLkbPyDdX2UKGgGaAloD0MIEk92M6Of7L+UhpRSlGgVSzJoFkdAph3F72L5ynV9lChoBmgJaA9DCNk9eViotfa/lIaUUpRoFUsyaBZHQKYdhaN+9al1fZQoaAZoCWgPQwgCfo0kQTjqv5SGlFKUaBVLMmgWR0CmHUPECNjtdX2UKGgGaAloD0MIhetRuB6F7r+UhpRSlGgVSzJoFkdAph8SHVPN3XV9lChoBmgJaA9DCMhD393K0gLAlIaUUpRoFUsyaBZHQKYe1S0BwMp1fZQoaAZoCWgPQwgYYB+dunLuv5SGlFKUaBVLMmgWR0CmHpTkp7TldX2UKGgGaAloD0MI5iSUvhBSBMCUhpRSlGgVSzJoFkdAph5Sp71Iy3V9lChoBmgJaA9DCLQ+5ZgsLva/lIaUUpRoFUsyaBZHQKYgM/bCaZx1fZQoaAZoCWgPQwh7Z7RVSaT9v5SGlFKUaBVLMmgWR0CmH/csMAmzdX2UKGgGaAloD0MIh1Pm5hvxAcCUhpRSlGgVSzJoFkdAph+2qaPS2HV9lChoBmgJaA9DCIhmnlxToAPAlIaUUpRoFUsyaBZHQKYfdFjNILB1fZQoaAZoCWgPQwhK8fEJ2VkDwJSGlFKUaBVLMmgWR0CmITKzRhMKdX2UKGgGaAloD0MI51YIq7GkBcCUhpRSlGgVSzJoFkdApiD19Dx9X3V9lChoBmgJaA9DCBIvT+eK0v+/lIaUUpRoFUsyaBZHQKYgtZpSJj51fZQoaAZoCWgPQwi5NH7hlQQCwJSGlFKUaBVLMmgWR0CmIHNoJzDGdX2UKGgGaAloD0MIJCpUNxf/7r+UhpRSlGgVSzJoFkdApiJKzVtoBnV9lChoBmgJaA9DCCrJOhxdJQDAlIaUUpRoFUsyaBZHQKYiDgCwKSh1fZQoaAZoCWgPQwj1KjI6IMkCwJSGlFKUaBVLMmgWR0CmIc2uxKQJdX2UKGgGaAloD0MIDr4wmSrY97+UhpRSlGgVSzJoFkdApiGL17IDHXV9lChoBmgJaA9DCGMMrOP4Yf+/lIaUUpRoFUsyaBZHQKYjW4+8oQZ1fZQoaAZoCWgPQwjLDvEPW3ryv5SGlFKUaBVLMmgWR0CmIx7S7Xg+dX2UKGgGaAloD0MIHxSUopU7AsCUhpRSlGgVSzJoFkdApiLef029+XV9lChoBmgJaA9DCGtJRzmYbQHAlIaUUpRoFUsyaBZHQKYinE+gUUR1fZQoaAZoCWgPQwjoLomzIuoDwJSGlFKUaBVLMmgWR0CmJG+UQkHEdX2UKGgGaAloD0MIZeCAlq4g/L+UhpRSlGgVSzJoFkdApiQy0+kgwHV9lChoBmgJaA9DCM6KqIk+3/W/lIaUUpRoFUsyaBZHQKYj8scQyyl1fZQoaAZoCWgPQwj5LTpZaj3uv5SGlFKUaBVLMmgWR0CmI7DBMzuXdX2UKGgGaAloD0MI6spneR5c6b+UhpRSlGgVSzJoFkdApiWKUTtb93V9lChoBmgJaA9DCE5GlWHcDfm/lIaUUpRoFUsyaBZHQKYlTctXgcd1fZQoaAZoCWgPQwiBs5QsJ6H4v5SGlFKUaBVLMmgWR0CmJQ2TPjXGdX2UKGgGaAloD0MIQrXBiehX9r+UhpRSlGgVSzJoFkdApiTLijtXxXV9lChoBmgJaA9DCHtJY7SOKuq/lIaUUpRoFUsyaBZHQKYmq0/GEPF1fZQoaAZoCWgPQwg9KZMa2oDxv5SGlFKUaBVLMmgWR0CmJm5VOsT4dX2UKGgGaAloD0MIMEs7NZcb+r+UhpRSlGgVSzJoFkdApiYuDUVi4XV9lChoBmgJaA9DCBpvK702m+q/lIaUUpRoFUsyaBZHQKYl6/qxC6Z1fZQoaAZoCWgPQwjx8nSuKCX4v5SGlFKUaBVLMmgWR0CmJ8n1OCXhdX2UKGgGaAloD0MIQPomTYPi+7+UhpRSlGgVSzJoFkdApieNGd7OV3V9lChoBmgJaA9DCDblCu9ykem/lIaUUpRoFUsyaBZHQKYnTN/vv0B1fZQoaAZoCWgPQwiIEFfO3pkAwJSGlFKUaBVLMmgWR0CmJwrQokRjdX2UKGgGaAloD0MIbAVNS6yM67+UhpRSlGgVSzJoFkdApij2XzDn/3V9lChoBmgJaA9DCI3w9iAE5O2/lIaUUpRoFUsyaBZHQKYoucJ+lTF1fZQoaAZoCWgPQwjrAl5m2Cjwv5SGlFKUaBVLMmgWR0CmKHmw7kn1dX2UKGgGaAloD0MIQPuRIjLs+b+UhpRSlGgVSzJoFkdApig30RODa3V9lChoBmgJaA9DCL0A++jUlee/lIaUUpRoFUsyaBZHQKYqIicoYvZ1fZQoaAZoCWgPQwiPHOkMjDzvv5SGlFKUaBVLMmgWR0CmKeVct5D7dX2UKGgGaAloD0MINxlVhnG38L+UhpRSlGgVSzJoFkdApimlUCJXQ3V9lChoBmgJaA9DCJLNVfMcEfC/lIaUUpRoFUsyaBZHQKYpY1yeZoh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (615 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.3861569188069551, "std_reward": 0.2991057073296377, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T22:01:09.382467"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb35fefcabd788b9a7db8cba99acd378effde11f9190b45d4107328445b77c40
3
+ size 3056