File size: 1,169 Bytes
8c69649 cf11603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: llama3.2
language:
- en
- de
- es
- fr
- th
- pt
base_model:
- meta-llama/Llama-3.2-1B-Instruct
library_name: transformers
tags:
- meta
- llama
- llama-3
- pytorch
---
Model is quantized to FP8 using llm_compressor.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
# Define the model ID for the model you want to quantize
MODEL_ID = "meta-llama/Llama-3.2-1B-Instruct"
# Load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Configure the quantization recipe
recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
# Apply the quantization algorithm
oneshot(model=model, recipe=recipe)
# Define the directory to save the quantized model
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
# Save the quantized model and tokenizer
model.save_pretrained(SAVE_DIR)
tokenizer.save_pretrained(SAVE_DIR)
print(f"Quantized model saved to (SAVE_DIR)")
``` |