--- license: llama3.2 language: - en - de - es - fr - th - pt base_model: - meta-llama/Llama-3.2-1B-Instruct library_name: transformers tags: - meta - llama - llama-3 - pytorch --- Model is quantized to FP8 using llm_compressor. ```python from transformers import AutoTokenizer, AutoModelForCausalLM from llmcompressor.transformers import oneshot from llmcompressor.modifiers.quantization import QuantizationModifier # Define the model ID for the model you want to quantize MODEL_ID = "meta-llama/Llama-3.2-1B-Instruct" # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Configure the quantization recipe recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]) # Apply the quantization algorithm oneshot(model=model, recipe=recipe) # Define the directory to save the quantized model SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic" # Save the quantized model and tokenizer model.save_pretrained(SAVE_DIR) tokenizer.save_pretrained(SAVE_DIR) print(f"Quantized model saved to (SAVE_DIR)") ```