File size: 2,098 Bytes
1844067
 
 
 
 
 
 
 
 
 
 
 
25a28d2
797e944
1844067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
base_model:
- Sao10K/L3-8B-Stheno-v3.2
- Sao10K/L3-8B-Stheno-v3.2
- Sao10K/L3-8B-Stheno-v3.1
- Sao10K/L3-8B-Stheno-v3.1
tags:
- merge
- mergekit
- lazymergekit
- Sao10K/L3-8B-Stheno-v3.2
- Sao10K/L3-8B-Stheno-v3.1
- not-for-all-audiences
license: apache-2.0
---

# L3-15B-Stheno-passthrough

L3-15B-Stheno-passthrough is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2)
* [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2)
* [Sao10K/L3-8B-Stheno-v3.1](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.1)
* [Sao10K/L3-8B-Stheno-v3.1](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.1)

## 🧩 Configuration

```yaml
slices:
- sources:
  - layer_range: [0, 24]
    model: Sao10K/L3-8B-Stheno-v3.2
- sources:
  - layer_range: [8, 24]
    model: Sao10K/L3-8B-Stheno-v3.2
    parameters:
      scale:
      - filter: o_proj
        value: 0.0
      - filter: down_proj
        value: 0.0
      - value: 1.0
- sources:
  - layer_range: [8, 24]
    model: Sao10K/L3-8B-Stheno-v3.1
    parameters:
      scale:
      - filter: o_proj
        value: 0.0
      - filter: down_proj
        value: 0.0
      - value: 1.0
- sources:
  - layer_range: [24, 32]
    model: Sao10K/L3-8B-Stheno-v3.1
dtype: bfloat16
merge_method: passthrough
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jsfs11/L3-15B-Stheno-passthrough"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```