Update README.md
Browse files
README.md
CHANGED
@@ -36,7 +36,7 @@ library_name: transformers
|
|
36 |
本模型是以司法院公開之「詐欺」案件判決書做成之資料集,基於 [Google Gemma2:2b](https://huggingface.co/google/gemma-2-2b) 模型進行微調訓練,可以自動生成詐欺及竊盜案件之犯罪事實段落之草稿。資料集之資料範圍從100年1月1日至110年12月31日,所蒐集到的原始資料共有 74823 篇(判決以及裁定),我們只取判決書的「犯罪事實」欄位內容,並把這原始的資料分成三份,用於訓練的資料集有59858篇,約佔原始資料的80%,剩下的20%,則是各分配10%給驗證集(7482篇),10%給測試集(7483篇)。在本網頁進行測試時,請在模型載入完畢並生成第一小句後,持續按下Compute按鈕,就能持續生成文字。或是輸入自己想要測試的資料到文字框中進行測試。或是可以到[這裡](https://huggingface.co/spaces/jslin09/legal_document_drafting)有更完整的使用體驗。
|
37 |
|
38 |
# 比較
|
39 |
-
|
40 |
![ROUGE-L](https://i.imgur.com/XiAEH1B.png)
|
41 |
|
42 |
# 使用範例
|
|
|
36 |
本模型是以司法院公開之「詐欺」案件判決書做成之資料集,基於 [Google Gemma2:2b](https://huggingface.co/google/gemma-2-2b) 模型進行微調訓練,可以自動生成詐欺及竊盜案件之犯罪事實段落之草稿。資料集之資料範圍從100年1月1日至110年12月31日,所蒐集到的原始資料共有 74823 篇(判決以及裁定),我們只取判決書的「犯罪事實」欄位內容,並把這原始的資料分成三份,用於訓練的資料集有59858篇,約佔原始資料的80%,剩下的20%,則是各分配10%給驗證集(7482篇),10%給測試集(7483篇)。在本網頁進行測試時,請在模型載入完畢並生成第一小句後,持續按下Compute按鈕,就能持續生成文字。或是輸入自己想要測試的資料到文字框中進行測試。或是可以到[這裡](https://huggingface.co/spaces/jslin09/legal_document_drafting)有更完整的使用體驗。
|
37 |
|
38 |
# 比較
|
39 |
+
以下是本模型與經過微調後的BLOOM 560m、Llama 3.2-1b以 [ROUGE-L](https://en.wikipedia.org/wiki/ROUGE_(metric)) 做評估後的散點圖。
|
40 |
![ROUGE-L](https://i.imgur.com/XiAEH1B.png)
|
41 |
|
42 |
# 使用範例
|