Update README.md
Browse files
README.md
CHANGED
@@ -32,3 +32,79 @@ widget:
|
|
32 |
example_title: 偽造特種文書(契約、車牌等)詐財
|
33 |
library_name: transformers
|
34 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
example_title: 偽造特種文書(契約、車牌等)詐財
|
33 |
library_name: transformers
|
34 |
---
|
35 |
+
# 判決書「犯罪事實」欄草稿自動生成
|
36 |
+
本模型是以司法院公開之「詐欺」案件判決書做成之資料集,基於 [Llama 3.2-1b](https://huggingface.co/meta-llama/Llama-3.2-1B) 模型進行微調訓練,可以自動生成詐欺及竊盜案件之犯罪事實段落之草稿。資料集之資料範圍從100年1月1日至110年12月31日,所蒐集到的原始資料共有 74823 篇(判決以及裁定),我們只取判決書的「犯罪事實」欄位內容,並把這原始的資料分成三份,用於訓練的資料集有59858篇,約佔原始資料的80%,剩下的20%,則是各分配10%給驗證集(7482篇),10%給測試集(7483篇)。在本網頁進行測試時,請在模型載入完畢並生成第一小句後,持續按下Compute按鈕,就能持續生成文字。或是輸入自己想要測試的資料到文字框中進行測試。或是可以到[這裡](https://huggingface.co/spaces/jslin09/legal_document_drafting)有更完整的使用體驗。
|
37 |
+
|
38 |
+
# 使用範例
|
39 |
+
如果要在自己的程式中調用本模型,可以參考下列的 Python 程式碼,藉由呼叫 API 的方式來生成刑事判決書「犯罪事實」欄的內容。
|
40 |
+
<details>
|
41 |
+
<summary> 點擊後展開 </summary>
|
42 |
+
<pre>
|
43 |
+
<code>
|
44 |
+
import requests, json
|
45 |
+
from time import sleep
|
46 |
+
from tqdm.auto import tqdm, trange
|
47 |
+
|
48 |
+
# Load model directly
|
49 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
50 |
+
|
51 |
+
API_URL = "https://api-inference.huggingface.co/models/jslin09/llama-3.2-1b-fraud"
|
52 |
+
API_TOKEN = 'XXXXXXXXXXXXXXX' # 調用模型的 API token
|
53 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
54 |
+
|
55 |
+
def query(payload):
|
56 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
57 |
+
return json.loads(response.content.decode("utf-8"))
|
58 |
+
|
59 |
+
prompt = "森上梅前明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有,"
|
60 |
+
query_dict = {
|
61 |
+
"inputs": prompt,
|
62 |
+
}
|
63 |
+
text_len = 300
|
64 |
+
t = trange(text_len, desc= '生成例稿', leave=True)
|
65 |
+
for i in t:
|
66 |
+
response = query(query_dict)
|
67 |
+
try:
|
68 |
+
response_text = response[0]['generated_text']
|
69 |
+
query_dict["inputs"] = response_text
|
70 |
+
t.set_description(f"{i}: {response[0]['generated_text']}")
|
71 |
+
t.refresh()
|
72 |
+
except KeyError:
|
73 |
+
sleep(30) # 如果伺服器太忙無回應,等30秒後再試。
|
74 |
+
pass
|
75 |
+
print(response[0]['generated_text'])
|
76 |
+
</code>
|
77 |
+
</pre>
|
78 |
+
</details>
|
79 |
+
|
80 |
+
或是,你要使用 transformers 套件來實作你的程式,將本模型下載至你本地端的電腦中執行,可以參考下列程式碼:
|
81 |
+
<details>
|
82 |
+
<summary> 點擊後展開 </summary>
|
83 |
+
<pre>
|
84 |
+
<code>
|
85 |
+
# Load model directly
|
86 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
87 |
+
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained("jslin09/llama-3.2-1b-fraud")
|
89 |
+
model = AutoModelForCausalLM.from_pretrained("jslin09/llama-3.2-1b-fraud")
|
90 |
+
|
91 |
+
</code>
|
92 |
+
</pre>
|
93 |
+
</details>
|
94 |
+
|
95 |
+
# 致謝
|
96 |
+
微調本模型所需要的算力,是由[評律網](https://www.pingluweb.com.tw/)提供 NVIDIA H100。特此致謝。
|
97 |
+
|
98 |
+
# 引文訊息
|
99 |
+
|
100 |
+
```
|
101 |
+
@misc{lin2024legal,
|
102 |
+
title={Legal Documents Drafting with Fine-Tuned Pre-Trained Large Language Model},
|
103 |
+
author={Chun-Hsien Lin and Pu-Jen Cheng},
|
104 |
+
year={2024},
|
105 |
+
eprint={2406.04202},
|
106 |
+
archivePrefix={arXiv},
|
107 |
+
primaryClass={cs.CL}
|
108 |
+
url = {https://arxiv.org/abs/2406.04202}
|
109 |
+
}
|
110 |
+
```
|