jspringer commited on
Commit
455fbaa
·
1 Parent(s): ae8a702

add readme

Browse files
Files changed (1) hide show
  1. README.md +2597 -1
README.md CHANGED
@@ -1,3 +1,2599 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: mlm
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 82.97014925373135
18
+ - type: ap
19
+ value: 49.6288385893607
20
+ - type: f1
21
+ value: 77.58957447993662
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 90.975425
33
+ - type: ap
34
+ value: 87.57349835900825
35
+ - type: f1
36
+ value: 90.96732416386632
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 48.708
48
+ - type: f1
49
+ value: 47.736228936979586
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 32.006
61
+ - type: map_at_10
62
+ value: 49.268
63
+ - type: map_at_100
64
+ value: 49.903999999999996
65
+ - type: map_at_1000
66
+ value: 49.909
67
+ - type: map_at_3
68
+ value: 44.334
69
+ - type: map_at_5
70
+ value: 47.374
71
+ - type: mrr_at_1
72
+ value: 32.788000000000004
73
+ - type: mrr_at_10
74
+ value: 49.707
75
+ - type: mrr_at_100
76
+ value: 50.346999999999994
77
+ - type: mrr_at_1000
78
+ value: 50.352
79
+ - type: mrr_at_3
80
+ value: 44.95
81
+ - type: mrr_at_5
82
+ value: 47.766999999999996
83
+ - type: ndcg_at_1
84
+ value: 32.006
85
+ - type: ndcg_at_10
86
+ value: 58.523
87
+ - type: ndcg_at_100
88
+ value: 61.095
89
+ - type: ndcg_at_1000
90
+ value: 61.190999999999995
91
+ - type: ndcg_at_3
92
+ value: 48.431000000000004
93
+ - type: ndcg_at_5
94
+ value: 53.94
95
+ - type: precision_at_1
96
+ value: 32.006
97
+ - type: precision_at_10
98
+ value: 8.791
99
+ - type: precision_at_100
100
+ value: 0.989
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 20.104
105
+ - type: precision_at_5
106
+ value: 14.751
107
+ - type: recall_at_1
108
+ value: 32.006
109
+ - type: recall_at_10
110
+ value: 87.909
111
+ - type: recall_at_100
112
+ value: 98.86200000000001
113
+ - type: recall_at_1000
114
+ value: 99.57300000000001
115
+ - type: recall_at_3
116
+ value: 60.313
117
+ - type: recall_at_5
118
+ value: 73.75500000000001
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 47.01500173547629
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 43.52209238193538
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 64.1348784470504
152
+ - type: mrr
153
+ value: 76.93762916062083
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 87.8322696692348
165
+ - type: cos_sim_spearman
166
+ value: 86.53751398463592
167
+ - type: euclidean_pearson
168
+ value: 86.1435544054336
169
+ - type: euclidean_spearman
170
+ value: 86.70799979698164
171
+ - type: manhattan_pearson
172
+ value: 86.1206703865016
173
+ - type: manhattan_spearman
174
+ value: 86.47004256773585
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 88.1461038961039
186
+ - type: f1
187
+ value: 88.09877611214092
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 35.53021718892608
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 35.34236915611622
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 36.435
221
+ - type: map_at_10
222
+ value: 49.437999999999995
223
+ - type: map_at_100
224
+ value: 51.105999999999995
225
+ - type: map_at_1000
226
+ value: 51.217999999999996
227
+ - type: map_at_3
228
+ value: 44.856
229
+ - type: map_at_5
230
+ value: 47.195
231
+ - type: mrr_at_1
232
+ value: 45.78
233
+ - type: mrr_at_10
234
+ value: 56.302
235
+ - type: mrr_at_100
236
+ value: 56.974000000000004
237
+ - type: mrr_at_1000
238
+ value: 57.001999999999995
239
+ - type: mrr_at_3
240
+ value: 53.6
241
+ - type: mrr_at_5
242
+ value: 55.059999999999995
243
+ - type: ndcg_at_1
244
+ value: 44.921
245
+ - type: ndcg_at_10
246
+ value: 56.842000000000006
247
+ - type: ndcg_at_100
248
+ value: 61.586
249
+ - type: ndcg_at_1000
250
+ value: 63.039
251
+ - type: ndcg_at_3
252
+ value: 50.612
253
+ - type: ndcg_at_5
254
+ value: 53.181
255
+ - type: precision_at_1
256
+ value: 44.921
257
+ - type: precision_at_10
258
+ value: 11.245
259
+ - type: precision_at_100
260
+ value: 1.7069999999999999
261
+ - type: precision_at_1000
262
+ value: 0.216
263
+ - type: precision_at_3
264
+ value: 24.224999999999998
265
+ - type: precision_at_5
266
+ value: 17.511
267
+ - type: recall_at_1
268
+ value: 36.435
269
+ - type: recall_at_10
270
+ value: 70.998
271
+ - type: recall_at_100
272
+ value: 89.64
273
+ - type: recall_at_1000
274
+ value: 98.654
275
+ - type: recall_at_3
276
+ value: 53.034000000000006
277
+ - type: recall_at_5
278
+ value: 60.41
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 33.371
290
+ - type: map_at_10
291
+ value: 45.301
292
+ - type: map_at_100
293
+ value: 46.663
294
+ - type: map_at_1000
295
+ value: 46.791
296
+ - type: map_at_3
297
+ value: 41.79
298
+ - type: map_at_5
299
+ value: 43.836999999999996
300
+ - type: mrr_at_1
301
+ value: 42.611
302
+ - type: mrr_at_10
303
+ value: 51.70400000000001
304
+ - type: mrr_at_100
305
+ value: 52.342
306
+ - type: mrr_at_1000
307
+ value: 52.38
308
+ - type: mrr_at_3
309
+ value: 49.374
310
+ - type: mrr_at_5
311
+ value: 50.82
312
+ - type: ndcg_at_1
313
+ value: 42.166
314
+ - type: ndcg_at_10
315
+ value: 51.49
316
+ - type: ndcg_at_100
317
+ value: 56.005
318
+ - type: ndcg_at_1000
319
+ value: 57.748
320
+ - type: ndcg_at_3
321
+ value: 46.769
322
+ - type: ndcg_at_5
323
+ value: 49.155
324
+ - type: precision_at_1
325
+ value: 42.166
326
+ - type: precision_at_10
327
+ value: 9.841
328
+ - type: precision_at_100
329
+ value: 1.569
330
+ - type: precision_at_1000
331
+ value: 0.202
332
+ - type: precision_at_3
333
+ value: 22.803
334
+ - type: precision_at_5
335
+ value: 16.229
336
+ - type: recall_at_1
337
+ value: 33.371
338
+ - type: recall_at_10
339
+ value: 62.52799999999999
340
+ - type: recall_at_100
341
+ value: 81.269
342
+ - type: recall_at_1000
343
+ value: 91.824
344
+ - type: recall_at_3
345
+ value: 48.759
346
+ - type: recall_at_5
347
+ value: 55.519
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 41.421
359
+ - type: map_at_10
360
+ value: 55.985
361
+ - type: map_at_100
362
+ value: 56.989999999999995
363
+ - type: map_at_1000
364
+ value: 57.028
365
+ - type: map_at_3
366
+ value: 52.271
367
+ - type: map_at_5
368
+ value: 54.517
369
+ - type: mrr_at_1
370
+ value: 47.272999999999996
371
+ - type: mrr_at_10
372
+ value: 59.266
373
+ - type: mrr_at_100
374
+ value: 59.821999999999996
375
+ - type: mrr_at_1000
376
+ value: 59.839
377
+ - type: mrr_at_3
378
+ value: 56.677
379
+ - type: mrr_at_5
380
+ value: 58.309999999999995
381
+ - type: ndcg_at_1
382
+ value: 47.147
383
+ - type: ndcg_at_10
384
+ value: 62.596
385
+ - type: ndcg_at_100
386
+ value: 66.219
387
+ - type: ndcg_at_1000
388
+ value: 66.886
389
+ - type: ndcg_at_3
390
+ value: 56.558
391
+ - type: ndcg_at_5
392
+ value: 59.805
393
+ - type: precision_at_1
394
+ value: 47.147
395
+ - type: precision_at_10
396
+ value: 10.245
397
+ - type: precision_at_100
398
+ value: 1.302
399
+ - type: precision_at_1000
400
+ value: 0.13899999999999998
401
+ - type: precision_at_3
402
+ value: 25.663999999999998
403
+ - type: precision_at_5
404
+ value: 17.793
405
+ - type: recall_at_1
406
+ value: 41.421
407
+ - type: recall_at_10
408
+ value: 78.77499999999999
409
+ - type: recall_at_100
410
+ value: 93.996
411
+ - type: recall_at_1000
412
+ value: 98.60600000000001
413
+ - type: recall_at_3
414
+ value: 62.891
415
+ - type: recall_at_5
416
+ value: 70.819
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 27.517999999999997
428
+ - type: map_at_10
429
+ value: 37.468
430
+ - type: map_at_100
431
+ value: 38.667
432
+ - type: map_at_1000
433
+ value: 38.743
434
+ - type: map_at_3
435
+ value: 34.524
436
+ - type: map_at_5
437
+ value: 36.175000000000004
438
+ - type: mrr_at_1
439
+ value: 29.378999999999998
440
+ - type: mrr_at_10
441
+ value: 39.54
442
+ - type: mrr_at_100
443
+ value: 40.469
444
+ - type: mrr_at_1000
445
+ value: 40.522000000000006
446
+ - type: mrr_at_3
447
+ value: 36.685
448
+ - type: mrr_at_5
449
+ value: 38.324000000000005
450
+ - type: ndcg_at_1
451
+ value: 29.718
452
+ - type: ndcg_at_10
453
+ value: 43.091
454
+ - type: ndcg_at_100
455
+ value: 48.44
456
+ - type: ndcg_at_1000
457
+ value: 50.181
458
+ - type: ndcg_at_3
459
+ value: 37.34
460
+ - type: ndcg_at_5
461
+ value: 40.177
462
+ - type: precision_at_1
463
+ value: 29.718
464
+ - type: precision_at_10
465
+ value: 6.723
466
+ - type: precision_at_100
467
+ value: 0.992
468
+ - type: precision_at_1000
469
+ value: 0.117
470
+ - type: precision_at_3
471
+ value: 16.083
472
+ - type: precision_at_5
473
+ value: 11.322000000000001
474
+ - type: recall_at_1
475
+ value: 27.517999999999997
476
+ - type: recall_at_10
477
+ value: 58.196999999999996
478
+ - type: recall_at_100
479
+ value: 82.07799999999999
480
+ - type: recall_at_1000
481
+ value: 94.935
482
+ - type: recall_at_3
483
+ value: 42.842
484
+ - type: recall_at_5
485
+ value: 49.58
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 19.621
497
+ - type: map_at_10
498
+ value: 30.175
499
+ - type: map_at_100
500
+ value: 31.496000000000002
501
+ - type: map_at_1000
502
+ value: 31.602000000000004
503
+ - type: map_at_3
504
+ value: 26.753
505
+ - type: map_at_5
506
+ value: 28.857
507
+ - type: mrr_at_1
508
+ value: 25.497999999999998
509
+ - type: mrr_at_10
510
+ value: 35.44
511
+ - type: mrr_at_100
512
+ value: 36.353
513
+ - type: mrr_at_1000
514
+ value: 36.412
515
+ - type: mrr_at_3
516
+ value: 32.275999999999996
517
+ - type: mrr_at_5
518
+ value: 34.434
519
+ - type: ndcg_at_1
520
+ value: 24.502
521
+ - type: ndcg_at_10
522
+ value: 36.423
523
+ - type: ndcg_at_100
524
+ value: 42.289
525
+ - type: ndcg_at_1000
526
+ value: 44.59
527
+ - type: ndcg_at_3
528
+ value: 30.477999999999998
529
+ - type: ndcg_at_5
530
+ value: 33.787
531
+ - type: precision_at_1
532
+ value: 24.502
533
+ - type: precision_at_10
534
+ value: 6.978
535
+ - type: precision_at_100
536
+ value: 1.139
537
+ - type: precision_at_1000
538
+ value: 0.145
539
+ - type: precision_at_3
540
+ value: 15.008
541
+ - type: precision_at_5
542
+ value: 11.468
543
+ - type: recall_at_1
544
+ value: 19.621
545
+ - type: recall_at_10
546
+ value: 50.516000000000005
547
+ - type: recall_at_100
548
+ value: 75.721
549
+ - type: recall_at_1000
550
+ value: 91.77199999999999
551
+ - type: recall_at_3
552
+ value: 34.695
553
+ - type: recall_at_5
554
+ value: 42.849
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 33.525
566
+ - type: map_at_10
567
+ value: 46.153
568
+ - type: map_at_100
569
+ value: 47.61
570
+ - type: map_at_1000
571
+ value: 47.715
572
+ - type: map_at_3
573
+ value: 42.397
574
+ - type: map_at_5
575
+ value: 44.487
576
+ - type: mrr_at_1
577
+ value: 42.445
578
+ - type: mrr_at_10
579
+ value: 52.174
580
+ - type: mrr_at_100
581
+ value: 52.986999999999995
582
+ - type: mrr_at_1000
583
+ value: 53.016
584
+ - type: mrr_at_3
585
+ value: 49.647000000000006
586
+ - type: mrr_at_5
587
+ value: 51.215999999999994
588
+ - type: ndcg_at_1
589
+ value: 42.156
590
+ - type: ndcg_at_10
591
+ value: 52.698
592
+ - type: ndcg_at_100
593
+ value: 58.167
594
+ - type: ndcg_at_1000
595
+ value: 59.71300000000001
596
+ - type: ndcg_at_3
597
+ value: 47.191
598
+ - type: ndcg_at_5
599
+ value: 49.745
600
+ - type: precision_at_1
601
+ value: 42.156
602
+ - type: precision_at_10
603
+ value: 9.682
604
+ - type: precision_at_100
605
+ value: 1.469
606
+ - type: precision_at_1000
607
+ value: 0.17700000000000002
608
+ - type: precision_at_3
609
+ value: 22.682
610
+ - type: precision_at_5
611
+ value: 16.035
612
+ - type: recall_at_1
613
+ value: 33.525
614
+ - type: recall_at_10
615
+ value: 66.142
616
+ - type: recall_at_100
617
+ value: 88.248
618
+ - type: recall_at_1000
619
+ value: 97.806
620
+ - type: recall_at_3
621
+ value: 50.541000000000004
622
+ - type: recall_at_5
623
+ value: 57.275
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 28.249000000000002
635
+ - type: map_at_10
636
+ value: 41.659
637
+ - type: map_at_100
638
+ value: 43.001
639
+ - type: map_at_1000
640
+ value: 43.094
641
+ - type: map_at_3
642
+ value: 37.607
643
+ - type: map_at_5
644
+ value: 39.662
645
+ - type: mrr_at_1
646
+ value: 36.301
647
+ - type: mrr_at_10
648
+ value: 47.482
649
+ - type: mrr_at_100
650
+ value: 48.251
651
+ - type: mrr_at_1000
652
+ value: 48.288
653
+ - type: mrr_at_3
654
+ value: 44.444
655
+ - type: mrr_at_5
656
+ value: 46.013999999999996
657
+ - type: ndcg_at_1
658
+ value: 35.616
659
+ - type: ndcg_at_10
660
+ value: 49.021
661
+ - type: ndcg_at_100
662
+ value: 54.362
663
+ - type: ndcg_at_1000
664
+ value: 55.864999999999995
665
+ - type: ndcg_at_3
666
+ value: 42.515
667
+ - type: ndcg_at_5
668
+ value: 45.053
669
+ - type: precision_at_1
670
+ value: 35.616
671
+ - type: precision_at_10
672
+ value: 9.372
673
+ - type: precision_at_100
674
+ value: 1.4120000000000001
675
+ - type: precision_at_1000
676
+ value: 0.172
677
+ - type: precision_at_3
678
+ value: 21.043
679
+ - type: precision_at_5
680
+ value: 14.84
681
+ - type: recall_at_1
682
+ value: 28.249000000000002
683
+ - type: recall_at_10
684
+ value: 65.514
685
+ - type: recall_at_100
686
+ value: 87.613
687
+ - type: recall_at_1000
688
+ value: 97.03
689
+ - type: recall_at_3
690
+ value: 47.21
691
+ - type: recall_at_5
692
+ value: 54.077
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 29.164583333333333
704
+ - type: map_at_10
705
+ value: 40.632000000000005
706
+ - type: map_at_100
707
+ value: 41.96875
708
+ - type: map_at_1000
709
+ value: 42.07508333333333
710
+ - type: map_at_3
711
+ value: 37.18458333333333
712
+ - type: map_at_5
713
+ value: 39.13700000000001
714
+ - type: mrr_at_1
715
+ value: 35.2035
716
+ - type: mrr_at_10
717
+ value: 45.28816666666666
718
+ - type: mrr_at_100
719
+ value: 46.11466666666667
720
+ - type: mrr_at_1000
721
+ value: 46.15741666666667
722
+ - type: mrr_at_3
723
+ value: 42.62925
724
+ - type: mrr_at_5
725
+ value: 44.18141666666667
726
+ - type: ndcg_at_1
727
+ value: 34.88958333333333
728
+ - type: ndcg_at_10
729
+ value: 46.90650000000001
730
+ - type: ndcg_at_100
731
+ value: 52.135333333333335
732
+ - type: ndcg_at_1000
733
+ value: 53.89766666666668
734
+ - type: ndcg_at_3
735
+ value: 41.32075
736
+ - type: ndcg_at_5
737
+ value: 44.02083333333333
738
+ - type: precision_at_1
739
+ value: 34.88958333333333
740
+ - type: precision_at_10
741
+ value: 8.392833333333332
742
+ - type: precision_at_100
743
+ value: 1.3085833333333334
744
+ - type: precision_at_1000
745
+ value: 0.16458333333333333
746
+ - type: precision_at_3
747
+ value: 19.361166666666666
748
+ - type: precision_at_5
749
+ value: 13.808416666666668
750
+ - type: recall_at_1
751
+ value: 29.164583333333333
752
+ - type: recall_at_10
753
+ value: 60.874666666666656
754
+ - type: recall_at_100
755
+ value: 83.21008333333334
756
+ - type: recall_at_1000
757
+ value: 95.09275000000001
758
+ - type: recall_at_3
759
+ value: 45.37591666666667
760
+ - type: recall_at_5
761
+ value: 52.367666666666665
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 28.682000000000002
773
+ - type: map_at_10
774
+ value: 37.913000000000004
775
+ - type: map_at_100
776
+ value: 39.037
777
+ - type: map_at_1000
778
+ value: 39.123999999999995
779
+ - type: map_at_3
780
+ value: 35.398
781
+ - type: map_at_5
782
+ value: 36.906
783
+ - type: mrr_at_1
784
+ value: 32.362
785
+ - type: mrr_at_10
786
+ value: 40.92
787
+ - type: mrr_at_100
788
+ value: 41.748000000000005
789
+ - type: mrr_at_1000
790
+ value: 41.81
791
+ - type: mrr_at_3
792
+ value: 38.701
793
+ - type: mrr_at_5
794
+ value: 39.936
795
+ - type: ndcg_at_1
796
+ value: 32.208999999999996
797
+ - type: ndcg_at_10
798
+ value: 42.84
799
+ - type: ndcg_at_100
800
+ value: 47.927
801
+ - type: ndcg_at_1000
802
+ value: 50.048
803
+ - type: ndcg_at_3
804
+ value: 38.376
805
+ - type: ndcg_at_5
806
+ value: 40.661
807
+ - type: precision_at_1
808
+ value: 32.208999999999996
809
+ - type: precision_at_10
810
+ value: 6.718
811
+ - type: precision_at_100
812
+ value: 1.012
813
+ - type: precision_at_1000
814
+ value: 0.127
815
+ - type: precision_at_3
816
+ value: 16.667
817
+ - type: precision_at_5
818
+ value: 11.503
819
+ - type: recall_at_1
820
+ value: 28.682000000000002
821
+ - type: recall_at_10
822
+ value: 54.872
823
+ - type: recall_at_100
824
+ value: 77.42999999999999
825
+ - type: recall_at_1000
826
+ value: 93.054
827
+ - type: recall_at_3
828
+ value: 42.577999999999996
829
+ - type: recall_at_5
830
+ value: 48.363
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 19.698
842
+ - type: map_at_10
843
+ value: 28.777
844
+ - type: map_at_100
845
+ value: 30.091
846
+ - type: map_at_1000
847
+ value: 30.209999999999997
848
+ - type: map_at_3
849
+ value: 25.874000000000002
850
+ - type: map_at_5
851
+ value: 27.438000000000002
852
+ - type: mrr_at_1
853
+ value: 24.295
854
+ - type: mrr_at_10
855
+ value: 33.077
856
+ - type: mrr_at_100
857
+ value: 34.036
858
+ - type: mrr_at_1000
859
+ value: 34.1
860
+ - type: mrr_at_3
861
+ value: 30.523
862
+ - type: mrr_at_5
863
+ value: 31.891000000000002
864
+ - type: ndcg_at_1
865
+ value: 24.535
866
+ - type: ndcg_at_10
867
+ value: 34.393
868
+ - type: ndcg_at_100
869
+ value: 40.213
870
+ - type: ndcg_at_1000
871
+ value: 42.748000000000005
872
+ - type: ndcg_at_3
873
+ value: 29.316
874
+ - type: ndcg_at_5
875
+ value: 31.588
876
+ - type: precision_at_1
877
+ value: 24.535
878
+ - type: precision_at_10
879
+ value: 6.483
880
+ - type: precision_at_100
881
+ value: 1.102
882
+ - type: precision_at_1000
883
+ value: 0.151
884
+ - type: precision_at_3
885
+ value: 14.201
886
+ - type: precision_at_5
887
+ value: 10.344000000000001
888
+ - type: recall_at_1
889
+ value: 19.698
890
+ - type: recall_at_10
891
+ value: 46.903
892
+ - type: recall_at_100
893
+ value: 72.624
894
+ - type: recall_at_1000
895
+ value: 90.339
896
+ - type: recall_at_3
897
+ value: 32.482
898
+ - type: recall_at_5
899
+ value: 38.452
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 30.56
911
+ - type: map_at_10
912
+ value: 41.993
913
+ - type: map_at_100
914
+ value: 43.317
915
+ - type: map_at_1000
916
+ value: 43.399
917
+ - type: map_at_3
918
+ value: 38.415
919
+ - type: map_at_5
920
+ value: 40.472
921
+ - type: mrr_at_1
922
+ value: 36.474000000000004
923
+ - type: mrr_at_10
924
+ value: 46.562
925
+ - type: mrr_at_100
926
+ value: 47.497
927
+ - type: mrr_at_1000
928
+ value: 47.532999999999994
929
+ - type: mrr_at_3
930
+ value: 43.905
931
+ - type: mrr_at_5
932
+ value: 45.379000000000005
933
+ - type: ndcg_at_1
934
+ value: 36.287000000000006
935
+ - type: ndcg_at_10
936
+ value: 48.262
937
+ - type: ndcg_at_100
938
+ value: 53.789
939
+ - type: ndcg_at_1000
940
+ value: 55.44
941
+ - type: ndcg_at_3
942
+ value: 42.358000000000004
943
+ - type: ndcg_at_5
944
+ value: 45.221000000000004
945
+ - type: precision_at_1
946
+ value: 36.287000000000006
947
+ - type: precision_at_10
948
+ value: 8.265
949
+ - type: precision_at_100
950
+ value: 1.24
951
+ - type: precision_at_1000
952
+ value: 0.148
953
+ - type: precision_at_3
954
+ value: 19.558
955
+ - type: precision_at_5
956
+ value: 13.880999999999998
957
+ - type: recall_at_1
958
+ value: 30.56
959
+ - type: recall_at_10
960
+ value: 62.891
961
+ - type: recall_at_100
962
+ value: 85.964
963
+ - type: recall_at_1000
964
+ value: 97.087
965
+ - type: recall_at_3
966
+ value: 46.755
967
+ - type: recall_at_5
968
+ value: 53.986000000000004
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 29.432000000000002
980
+ - type: map_at_10
981
+ value: 40.898
982
+ - type: map_at_100
983
+ value: 42.794
984
+ - type: map_at_1000
985
+ value: 43.029
986
+ - type: map_at_3
987
+ value: 37.658
988
+ - type: map_at_5
989
+ value: 39.519
990
+ - type: mrr_at_1
991
+ value: 36.364000000000004
992
+ - type: mrr_at_10
993
+ value: 46.9
994
+ - type: mrr_at_100
995
+ value: 47.819
996
+ - type: mrr_at_1000
997
+ value: 47.848
998
+ - type: mrr_at_3
999
+ value: 44.202999999999996
1000
+ - type: mrr_at_5
1001
+ value: 45.715
1002
+ - type: ndcg_at_1
1003
+ value: 35.573
1004
+ - type: ndcg_at_10
1005
+ value: 47.628
1006
+ - type: ndcg_at_100
1007
+ value: 53.88699999999999
1008
+ - type: ndcg_at_1000
1009
+ value: 55.584
1010
+ - type: ndcg_at_3
1011
+ value: 42.669000000000004
1012
+ - type: ndcg_at_5
1013
+ value: 45.036
1014
+ - type: precision_at_1
1015
+ value: 35.573
1016
+ - type: precision_at_10
1017
+ value: 8.933
1018
+ - type: precision_at_100
1019
+ value: 1.8159999999999998
1020
+ - type: precision_at_1000
1021
+ value: 0.256
1022
+ - type: precision_at_3
1023
+ value: 20.29
1024
+ - type: precision_at_5
1025
+ value: 14.387
1026
+ - type: recall_at_1
1027
+ value: 29.432000000000002
1028
+ - type: recall_at_10
1029
+ value: 60.388
1030
+ - type: recall_at_100
1031
+ value: 87.144
1032
+ - type: recall_at_1000
1033
+ value: 97.154
1034
+ - type: recall_at_3
1035
+ value: 45.675
1036
+ - type: recall_at_5
1037
+ value: 52.35300000000001
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 21.462999999999997
1049
+ - type: map_at_10
1050
+ value: 31.824
1051
+ - type: map_at_100
1052
+ value: 32.853
1053
+ - type: map_at_1000
1054
+ value: 32.948
1055
+ - type: map_at_3
1056
+ value: 28.671999999999997
1057
+ - type: map_at_5
1058
+ value: 30.579
1059
+ - type: mrr_at_1
1060
+ value: 23.66
1061
+ - type: mrr_at_10
1062
+ value: 34.091
1063
+ - type: mrr_at_100
1064
+ value: 35.077999999999996
1065
+ - type: mrr_at_1000
1066
+ value: 35.138999999999996
1067
+ - type: mrr_at_3
1068
+ value: 31.516
1069
+ - type: mrr_at_5
1070
+ value: 33.078
1071
+ - type: ndcg_at_1
1072
+ value: 23.845
1073
+ - type: ndcg_at_10
1074
+ value: 37.594
1075
+ - type: ndcg_at_100
1076
+ value: 42.74
1077
+ - type: ndcg_at_1000
1078
+ value: 44.93
1079
+ - type: ndcg_at_3
1080
+ value: 31.667
1081
+ - type: ndcg_at_5
1082
+ value: 34.841
1083
+ - type: precision_at_1
1084
+ value: 23.845
1085
+ - type: precision_at_10
1086
+ value: 6.229
1087
+ - type: precision_at_100
1088
+ value: 0.943
1089
+ - type: precision_at_1000
1090
+ value: 0.125
1091
+ - type: precision_at_3
1092
+ value: 14.11
1093
+ - type: precision_at_5
1094
+ value: 10.388
1095
+ - type: recall_at_1
1096
+ value: 21.462999999999997
1097
+ - type: recall_at_10
1098
+ value: 52.772
1099
+ - type: recall_at_100
1100
+ value: 76.794
1101
+ - type: recall_at_1000
1102
+ value: 92.852
1103
+ - type: recall_at_3
1104
+ value: 37.049
1105
+ - type: recall_at_5
1106
+ value: 44.729
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 15.466
1118
+ - type: map_at_10
1119
+ value: 25.275
1120
+ - type: map_at_100
1121
+ value: 27.176000000000002
1122
+ - type: map_at_1000
1123
+ value: 27.374
1124
+ - type: map_at_3
1125
+ value: 21.438
1126
+ - type: map_at_5
1127
+ value: 23.366
1128
+ - type: mrr_at_1
1129
+ value: 35.699999999999996
1130
+ - type: mrr_at_10
1131
+ value: 47.238
1132
+ - type: mrr_at_100
1133
+ value: 47.99
1134
+ - type: mrr_at_1000
1135
+ value: 48.021
1136
+ - type: mrr_at_3
1137
+ value: 44.463
1138
+ - type: mrr_at_5
1139
+ value: 46.039
1140
+ - type: ndcg_at_1
1141
+ value: 35.244
1142
+ - type: ndcg_at_10
1143
+ value: 34.559
1144
+ - type: ndcg_at_100
1145
+ value: 41.74
1146
+ - type: ndcg_at_1000
1147
+ value: 45.105000000000004
1148
+ - type: ndcg_at_3
1149
+ value: 29.284
1150
+ - type: ndcg_at_5
1151
+ value: 30.903999999999996
1152
+ - type: precision_at_1
1153
+ value: 35.244
1154
+ - type: precision_at_10
1155
+ value: 10.463000000000001
1156
+ - type: precision_at_100
1157
+ value: 1.8259999999999998
1158
+ - type: precision_at_1000
1159
+ value: 0.246
1160
+ - type: precision_at_3
1161
+ value: 21.65
1162
+ - type: precision_at_5
1163
+ value: 16.078
1164
+ - type: recall_at_1
1165
+ value: 15.466
1166
+ - type: recall_at_10
1167
+ value: 39.782000000000004
1168
+ - type: recall_at_100
1169
+ value: 64.622
1170
+ - type: recall_at_1000
1171
+ value: 83.233
1172
+ - type: recall_at_3
1173
+ value: 26.398
1174
+ - type: recall_at_5
1175
+ value: 31.676
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 9.414
1187
+ - type: map_at_10
1188
+ value: 22.435
1189
+ - type: map_at_100
1190
+ value: 32.393
1191
+ - type: map_at_1000
1192
+ value: 34.454
1193
+ - type: map_at_3
1194
+ value: 15.346000000000002
1195
+ - type: map_at_5
1196
+ value: 18.282999999999998
1197
+ - type: mrr_at_1
1198
+ value: 71.5
1199
+ - type: mrr_at_10
1200
+ value: 78.795
1201
+ - type: mrr_at_100
1202
+ value: 79.046
1203
+ - type: mrr_at_1000
1204
+ value: 79.054
1205
+ - type: mrr_at_3
1206
+ value: 77.333
1207
+ - type: mrr_at_5
1208
+ value: 78.146
1209
+ - type: ndcg_at_1
1210
+ value: 60.75000000000001
1211
+ - type: ndcg_at_10
1212
+ value: 46.829
1213
+ - type: ndcg_at_100
1214
+ value: 52.370000000000005
1215
+ - type: ndcg_at_1000
1216
+ value: 59.943999999999996
1217
+ - type: ndcg_at_3
1218
+ value: 51.33
1219
+ - type: ndcg_at_5
1220
+ value: 48.814
1221
+ - type: precision_at_1
1222
+ value: 71.75
1223
+ - type: precision_at_10
1224
+ value: 37.525
1225
+ - type: precision_at_100
1226
+ value: 12.075
1227
+ - type: precision_at_1000
1228
+ value: 2.464
1229
+ - type: precision_at_3
1230
+ value: 54.75
1231
+ - type: precision_at_5
1232
+ value: 47.55
1233
+ - type: recall_at_1
1234
+ value: 9.414
1235
+ - type: recall_at_10
1236
+ value: 28.67
1237
+ - type: recall_at_100
1238
+ value: 59.924
1239
+ - type: recall_at_1000
1240
+ value: 83.921
1241
+ - type: recall_at_3
1242
+ value: 16.985
1243
+ - type: recall_at_5
1244
+ value: 21.372
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 52.18000000000001
1256
+ - type: f1
1257
+ value: 47.04613218997081
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 82.57900000000001
1269
+ - type: map_at_10
1270
+ value: 88.465
1271
+ - type: map_at_100
1272
+ value: 88.649
1273
+ - type: map_at_1000
1274
+ value: 88.661
1275
+ - type: map_at_3
1276
+ value: 87.709
1277
+ - type: map_at_5
1278
+ value: 88.191
1279
+ - type: mrr_at_1
1280
+ value: 88.899
1281
+ - type: mrr_at_10
1282
+ value: 93.35900000000001
1283
+ - type: mrr_at_100
1284
+ value: 93.38499999999999
1285
+ - type: mrr_at_1000
1286
+ value: 93.38499999999999
1287
+ - type: mrr_at_3
1288
+ value: 93.012
1289
+ - type: mrr_at_5
1290
+ value: 93.282
1291
+ - type: ndcg_at_1
1292
+ value: 88.98899999999999
1293
+ - type: ndcg_at_10
1294
+ value: 91.22
1295
+ - type: ndcg_at_100
1296
+ value: 91.806
1297
+ - type: ndcg_at_1000
1298
+ value: 92.013
1299
+ - type: ndcg_at_3
1300
+ value: 90.236
1301
+ - type: ndcg_at_5
1302
+ value: 90.798
1303
+ - type: precision_at_1
1304
+ value: 88.98899999999999
1305
+ - type: precision_at_10
1306
+ value: 10.537
1307
+ - type: precision_at_100
1308
+ value: 1.106
1309
+ - type: precision_at_1000
1310
+ value: 0.11399999999999999
1311
+ - type: precision_at_3
1312
+ value: 33.598
1313
+ - type: precision_at_5
1314
+ value: 20.618
1315
+ - type: recall_at_1
1316
+ value: 82.57900000000001
1317
+ - type: recall_at_10
1318
+ value: 94.95400000000001
1319
+ - type: recall_at_100
1320
+ value: 97.14
1321
+ - type: recall_at_1000
1322
+ value: 98.407
1323
+ - type: recall_at_3
1324
+ value: 92.203
1325
+ - type: recall_at_5
1326
+ value: 93.747
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 27.871000000000002
1338
+ - type: map_at_10
1339
+ value: 46.131
1340
+ - type: map_at_100
1341
+ value: 48.245
1342
+ - type: map_at_1000
1343
+ value: 48.361
1344
+ - type: map_at_3
1345
+ value: 40.03
1346
+ - type: map_at_5
1347
+ value: 43.634
1348
+ - type: mrr_at_1
1349
+ value: 52.932
1350
+ - type: mrr_at_10
1351
+ value: 61.61299999999999
1352
+ - type: mrr_at_100
1353
+ value: 62.205
1354
+ - type: mrr_at_1000
1355
+ value: 62.224999999999994
1356
+ - type: mrr_at_3
1357
+ value: 59.388
1358
+ - type: mrr_at_5
1359
+ value: 60.760999999999996
1360
+ - type: ndcg_at_1
1361
+ value: 53.395
1362
+ - type: ndcg_at_10
1363
+ value: 54.506
1364
+ - type: ndcg_at_100
1365
+ value: 61.151999999999994
1366
+ - type: ndcg_at_1000
1367
+ value: 62.882000000000005
1368
+ - type: ndcg_at_3
1369
+ value: 49.903999999999996
1370
+ - type: ndcg_at_5
1371
+ value: 51.599
1372
+ - type: precision_at_1
1373
+ value: 53.395
1374
+ - type: precision_at_10
1375
+ value: 15.247
1376
+ - type: precision_at_100
1377
+ value: 2.221
1378
+ - type: precision_at_1000
1379
+ value: 0.255
1380
+ - type: precision_at_3
1381
+ value: 33.539
1382
+ - type: precision_at_5
1383
+ value: 24.722
1384
+ - type: recall_at_1
1385
+ value: 27.871000000000002
1386
+ - type: recall_at_10
1387
+ value: 62.074
1388
+ - type: recall_at_100
1389
+ value: 86.531
1390
+ - type: recall_at_1000
1391
+ value: 96.574
1392
+ - type: recall_at_3
1393
+ value: 45.003
1394
+ - type: recall_at_5
1395
+ value: 53.00899999999999
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 40.513
1407
+ - type: map_at_10
1408
+ value: 69.066
1409
+ - type: map_at_100
1410
+ value: 69.903
1411
+ - type: map_at_1000
1412
+ value: 69.949
1413
+ - type: map_at_3
1414
+ value: 65.44200000000001
1415
+ - type: map_at_5
1416
+ value: 67.784
1417
+ - type: mrr_at_1
1418
+ value: 80.891
1419
+ - type: mrr_at_10
1420
+ value: 86.42699999999999
1421
+ - type: mrr_at_100
1422
+ value: 86.577
1423
+ - type: mrr_at_1000
1424
+ value: 86.58200000000001
1425
+ - type: mrr_at_3
1426
+ value: 85.6
1427
+ - type: mrr_at_5
1428
+ value: 86.114
1429
+ - type: ndcg_at_1
1430
+ value: 81.026
1431
+ - type: ndcg_at_10
1432
+ value: 76.412
1433
+ - type: ndcg_at_100
1434
+ value: 79.16
1435
+ - type: ndcg_at_1000
1436
+ value: 79.989
1437
+ - type: ndcg_at_3
1438
+ value: 71.45
1439
+ - type: ndcg_at_5
1440
+ value: 74.286
1441
+ - type: precision_at_1
1442
+ value: 81.026
1443
+ - type: precision_at_10
1444
+ value: 16.198999999999998
1445
+ - type: precision_at_100
1446
+ value: 1.831
1447
+ - type: precision_at_1000
1448
+ value: 0.194
1449
+ - type: precision_at_3
1450
+ value: 46.721000000000004
1451
+ - type: precision_at_5
1452
+ value: 30.266
1453
+ - type: recall_at_1
1454
+ value: 40.513
1455
+ - type: recall_at_10
1456
+ value: 80.99300000000001
1457
+ - type: recall_at_100
1458
+ value: 91.526
1459
+ - type: recall_at_1000
1460
+ value: 96.935
1461
+ - type: recall_at_3
1462
+ value: 70.081
1463
+ - type: recall_at_5
1464
+ value: 75.665
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 87.42320000000001
1476
+ - type: ap
1477
+ value: 83.59975323233843
1478
+ - type: f1
1479
+ value: 87.38669942597816
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 22.676
1491
+ - type: map_at_10
1492
+ value: 35.865
1493
+ - type: map_at_100
1494
+ value: 37.019000000000005
1495
+ - type: map_at_1000
1496
+ value: 37.062
1497
+ - type: map_at_3
1498
+ value: 31.629
1499
+ - type: map_at_5
1500
+ value: 34.050999999999995
1501
+ - type: mrr_at_1
1502
+ value: 23.023
1503
+ - type: mrr_at_10
1504
+ value: 36.138999999999996
1505
+ - type: mrr_at_100
1506
+ value: 37.242
1507
+ - type: mrr_at_1000
1508
+ value: 37.28
1509
+ - type: mrr_at_3
1510
+ value: 32.053
1511
+ - type: mrr_at_5
1512
+ value: 34.383
1513
+ - type: ndcg_at_1
1514
+ value: 23.308999999999997
1515
+ - type: ndcg_at_10
1516
+ value: 43.254
1517
+ - type: ndcg_at_100
1518
+ value: 48.763
1519
+ - type: ndcg_at_1000
1520
+ value: 49.788
1521
+ - type: ndcg_at_3
1522
+ value: 34.688
1523
+ - type: ndcg_at_5
1524
+ value: 38.973
1525
+ - type: precision_at_1
1526
+ value: 23.308999999999997
1527
+ - type: precision_at_10
1528
+ value: 6.909999999999999
1529
+ - type: precision_at_100
1530
+ value: 0.967
1531
+ - type: precision_at_1000
1532
+ value: 0.106
1533
+ - type: precision_at_3
1534
+ value: 14.818999999999999
1535
+ - type: precision_at_5
1536
+ value: 11.072
1537
+ - type: recall_at_1
1538
+ value: 22.676
1539
+ - type: recall_at_10
1540
+ value: 66.077
1541
+ - type: recall_at_100
1542
+ value: 91.4
1543
+ - type: recall_at_1000
1544
+ value: 99.143
1545
+ - type: recall_at_3
1546
+ value: 42.845
1547
+ - type: recall_at_5
1548
+ value: 53.08500000000001
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 96.16279069767444
1560
+ - type: f1
1561
+ value: 96.02183835878418
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 85.74783401732788
1573
+ - type: f1
1574
+ value: 70.59661579230463
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 79.67047747141895
1586
+ - type: f1
1587
+ value: 77.06311183471965
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 82.82447881640887
1599
+ - type: f1
1600
+ value: 82.37598020010746
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 30.266131881264467
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 29.673653452453998
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 32.91846122902102
1634
+ - type: mrr
1635
+ value: 34.2557300204471
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 6.762
1647
+ - type: map_at_10
1648
+ value: 15.134
1649
+ - type: map_at_100
1650
+ value: 19.341
1651
+ - type: map_at_1000
1652
+ value: 20.961
1653
+ - type: map_at_3
1654
+ value: 10.735999999999999
1655
+ - type: map_at_5
1656
+ value: 12.751999999999999
1657
+ - type: mrr_at_1
1658
+ value: 52.941
1659
+ - type: mrr_at_10
1660
+ value: 60.766
1661
+ - type: mrr_at_100
1662
+ value: 61.196
1663
+ - type: mrr_at_1000
1664
+ value: 61.227
1665
+ - type: mrr_at_3
1666
+ value: 58.720000000000006
1667
+ - type: mrr_at_5
1668
+ value: 59.866
1669
+ - type: ndcg_at_1
1670
+ value: 50.929
1671
+ - type: ndcg_at_10
1672
+ value: 39.554
1673
+ - type: ndcg_at_100
1674
+ value: 36.307
1675
+ - type: ndcg_at_1000
1676
+ value: 44.743
1677
+ - type: ndcg_at_3
1678
+ value: 44.157000000000004
1679
+ - type: ndcg_at_5
1680
+ value: 42.142
1681
+ - type: precision_at_1
1682
+ value: 52.322
1683
+ - type: precision_at_10
1684
+ value: 29.412
1685
+ - type: precision_at_100
1686
+ value: 9.365
1687
+ - type: precision_at_1000
1688
+ value: 2.2159999999999997
1689
+ - type: precision_at_3
1690
+ value: 40.557
1691
+ - type: precision_at_5
1692
+ value: 35.913000000000004
1693
+ - type: recall_at_1
1694
+ value: 6.762
1695
+ - type: recall_at_10
1696
+ value: 19.689999999999998
1697
+ - type: recall_at_100
1698
+ value: 36.687
1699
+ - type: recall_at_1000
1700
+ value: 67.23
1701
+ - type: recall_at_3
1702
+ value: 11.773
1703
+ - type: recall_at_5
1704
+ value: 15.18
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 36.612
1716
+ - type: map_at_10
1717
+ value: 54.208
1718
+ - type: map_at_100
1719
+ value: 55.056000000000004
1720
+ - type: map_at_1000
1721
+ value: 55.069
1722
+ - type: map_at_3
1723
+ value: 49.45
1724
+ - type: map_at_5
1725
+ value: 52.556000000000004
1726
+ - type: mrr_at_1
1727
+ value: 41.976
1728
+ - type: mrr_at_10
1729
+ value: 56.972
1730
+ - type: mrr_at_100
1731
+ value: 57.534
1732
+ - type: mrr_at_1000
1733
+ value: 57.542
1734
+ - type: mrr_at_3
1735
+ value: 53.312000000000005
1736
+ - type: mrr_at_5
1737
+ value: 55.672999999999995
1738
+ - type: ndcg_at_1
1739
+ value: 41.338
1740
+ - type: ndcg_at_10
1741
+ value: 62.309000000000005
1742
+ - type: ndcg_at_100
1743
+ value: 65.557
1744
+ - type: ndcg_at_1000
1745
+ value: 65.809
1746
+ - type: ndcg_at_3
1747
+ value: 53.74100000000001
1748
+ - type: ndcg_at_5
1749
+ value: 58.772999999999996
1750
+ - type: precision_at_1
1751
+ value: 41.338
1752
+ - type: precision_at_10
1753
+ value: 10.107
1754
+ - type: precision_at_100
1755
+ value: 1.1900000000000002
1756
+ - type: precision_at_1000
1757
+ value: 0.121
1758
+ - type: precision_at_3
1759
+ value: 24.488
1760
+ - type: precision_at_5
1761
+ value: 17.596
1762
+ - type: recall_at_1
1763
+ value: 36.612
1764
+ - type: recall_at_10
1765
+ value: 84.408
1766
+ - type: recall_at_100
1767
+ value: 97.929
1768
+ - type: recall_at_1000
1769
+ value: 99.725
1770
+ - type: recall_at_3
1771
+ value: 62.676
1772
+ - type: recall_at_5
1773
+ value: 74.24199999999999
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 71.573
1785
+ - type: map_at_10
1786
+ value: 85.81
1787
+ - type: map_at_100
1788
+ value: 86.434
1789
+ - type: map_at_1000
1790
+ value: 86.446
1791
+ - type: map_at_3
1792
+ value: 82.884
1793
+ - type: map_at_5
1794
+ value: 84.772
1795
+ - type: mrr_at_1
1796
+ value: 82.53
1797
+ - type: mrr_at_10
1798
+ value: 88.51299999999999
1799
+ - type: mrr_at_100
1800
+ value: 88.59700000000001
1801
+ - type: mrr_at_1000
1802
+ value: 88.598
1803
+ - type: mrr_at_3
1804
+ value: 87.595
1805
+ - type: mrr_at_5
1806
+ value: 88.266
1807
+ - type: ndcg_at_1
1808
+ value: 82.39999999999999
1809
+ - type: ndcg_at_10
1810
+ value: 89.337
1811
+ - type: ndcg_at_100
1812
+ value: 90.436
1813
+ - type: ndcg_at_1000
1814
+ value: 90.498
1815
+ - type: ndcg_at_3
1816
+ value: 86.676
1817
+ - type: ndcg_at_5
1818
+ value: 88.241
1819
+ - type: precision_at_1
1820
+ value: 82.39999999999999
1821
+ - type: precision_at_10
1822
+ value: 13.58
1823
+ - type: precision_at_100
1824
+ value: 1.543
1825
+ - type: precision_at_1000
1826
+ value: 0.157
1827
+ - type: precision_at_3
1828
+ value: 38.04
1829
+ - type: precision_at_5
1830
+ value: 25.044
1831
+ - type: recall_at_1
1832
+ value: 71.573
1833
+ - type: recall_at_10
1834
+ value: 96.066
1835
+ - type: recall_at_100
1836
+ value: 99.73100000000001
1837
+ - type: recall_at_1000
1838
+ value: 99.991
1839
+ - type: recall_at_3
1840
+ value: 88.34
1841
+ - type: recall_at_5
1842
+ value: 92.79899999999999
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 61.767168063971724
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 66.00502775826037
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 4.718
1876
+ - type: map_at_10
1877
+ value: 12.13
1878
+ - type: map_at_100
1879
+ value: 14.269000000000002
1880
+ - type: map_at_1000
1881
+ value: 14.578
1882
+ - type: map_at_3
1883
+ value: 8.605
1884
+ - type: map_at_5
1885
+ value: 10.483
1886
+ - type: mrr_at_1
1887
+ value: 23.7
1888
+ - type: mrr_at_10
1889
+ value: 34.354
1890
+ - type: mrr_at_100
1891
+ value: 35.522
1892
+ - type: mrr_at_1000
1893
+ value: 35.571999999999996
1894
+ - type: mrr_at_3
1895
+ value: 31.15
1896
+ - type: mrr_at_5
1897
+ value: 32.98
1898
+ - type: ndcg_at_1
1899
+ value: 23.3
1900
+ - type: ndcg_at_10
1901
+ value: 20.171
1902
+ - type: ndcg_at_100
1903
+ value: 28.456
1904
+ - type: ndcg_at_1000
1905
+ value: 33.826
1906
+ - type: ndcg_at_3
1907
+ value: 19.104
1908
+ - type: ndcg_at_5
1909
+ value: 16.977999999999998
1910
+ - type: precision_at_1
1911
+ value: 23.3
1912
+ - type: precision_at_10
1913
+ value: 10.45
1914
+ - type: precision_at_100
1915
+ value: 2.239
1916
+ - type: precision_at_1000
1917
+ value: 0.35300000000000004
1918
+ - type: precision_at_3
1919
+ value: 17.933
1920
+ - type: precision_at_5
1921
+ value: 15.1
1922
+ - type: recall_at_1
1923
+ value: 4.718
1924
+ - type: recall_at_10
1925
+ value: 21.221999999999998
1926
+ - type: recall_at_100
1927
+ value: 45.42
1928
+ - type: recall_at_1000
1929
+ value: 71.642
1930
+ - type: recall_at_3
1931
+ value: 10.922
1932
+ - type: recall_at_5
1933
+ value: 15.322
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 85.2065344862739
1945
+ - type: cos_sim_spearman
1946
+ value: 83.2276569587515
1947
+ - type: euclidean_pearson
1948
+ value: 83.42726762105312
1949
+ - type: euclidean_spearman
1950
+ value: 83.31396596997742
1951
+ - type: manhattan_pearson
1952
+ value: 83.41123401762816
1953
+ - type: manhattan_spearman
1954
+ value: 83.34393052682026
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 81.28253173719754
1966
+ - type: cos_sim_spearman
1967
+ value: 76.12995701324436
1968
+ - type: euclidean_pearson
1969
+ value: 75.30693691794121
1970
+ - type: euclidean_spearman
1971
+ value: 75.12472789129536
1972
+ - type: manhattan_pearson
1973
+ value: 75.35860808729171
1974
+ - type: manhattan_spearman
1975
+ value: 75.30445827952794
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 82.09358031005694
1987
+ - type: cos_sim_spearman
1988
+ value: 83.18811147636619
1989
+ - type: euclidean_pearson
1990
+ value: 82.65513459991631
1991
+ - type: euclidean_spearman
1992
+ value: 82.71085530442987
1993
+ - type: manhattan_pearson
1994
+ value: 82.67700926821576
1995
+ - type: manhattan_spearman
1996
+ value: 82.73815539380426
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 81.51365440223137
2008
+ - type: cos_sim_spearman
2009
+ value: 80.59933905019179
2010
+ - type: euclidean_pearson
2011
+ value: 80.56660025433806
2012
+ - type: euclidean_spearman
2013
+ value: 80.27926539084027
2014
+ - type: manhattan_pearson
2015
+ value: 80.64632724055481
2016
+ - type: manhattan_spearman
2017
+ value: 80.43616365139444
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 86.8590461417506
2029
+ - type: cos_sim_spearman
2030
+ value: 87.16337291721602
2031
+ - type: euclidean_pearson
2032
+ value: 85.8847725068404
2033
+ - type: euclidean_spearman
2034
+ value: 86.12602873624066
2035
+ - type: manhattan_pearson
2036
+ value: 86.04095861363909
2037
+ - type: manhattan_spearman
2038
+ value: 86.35535645007629
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 83.61371557181502
2050
+ - type: cos_sim_spearman
2051
+ value: 85.16330754442785
2052
+ - type: euclidean_pearson
2053
+ value: 84.20831431260608
2054
+ - type: euclidean_spearman
2055
+ value: 84.33191523212125
2056
+ - type: manhattan_pearson
2057
+ value: 84.34911007642411
2058
+ - type: manhattan_spearman
2059
+ value: 84.49670164290394
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 90.54452933158781
2071
+ - type: cos_sim_spearman
2072
+ value: 90.88214621695892
2073
+ - type: euclidean_pearson
2074
+ value: 91.38488015281216
2075
+ - type: euclidean_spearman
2076
+ value: 91.01822259603908
2077
+ - type: manhattan_pearson
2078
+ value: 91.36449776198687
2079
+ - type: manhattan_spearman
2080
+ value: 90.90478717381717
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 68.00941643037453
2092
+ - type: cos_sim_spearman
2093
+ value: 67.03588472081898
2094
+ - type: euclidean_pearson
2095
+ value: 67.35224911601603
2096
+ - type: euclidean_spearman
2097
+ value: 66.35544831459266
2098
+ - type: manhattan_pearson
2099
+ value: 67.35080066508304
2100
+ - type: manhattan_spearman
2101
+ value: 66.07893473733782
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 85.18291011086279
2113
+ - type: cos_sim_spearman
2114
+ value: 85.66913777481429
2115
+ - type: euclidean_pearson
2116
+ value: 84.81115930027242
2117
+ - type: euclidean_spearman
2118
+ value: 85.07133983924173
2119
+ - type: manhattan_pearson
2120
+ value: 84.88932120524983
2121
+ - type: manhattan_spearman
2122
+ value: 85.176903109055
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 83.67543572266588
2134
+ - type: mrr
2135
+ value: 95.9468146232852
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 59.633
2147
+ - type: map_at_10
2148
+ value: 69.801
2149
+ - type: map_at_100
2150
+ value: 70.504
2151
+ - type: map_at_1000
2152
+ value: 70.519
2153
+ - type: map_at_3
2154
+ value: 67.72500000000001
2155
+ - type: map_at_5
2156
+ value: 68.812
2157
+ - type: mrr_at_1
2158
+ value: 62.333000000000006
2159
+ - type: mrr_at_10
2160
+ value: 70.956
2161
+ - type: mrr_at_100
2162
+ value: 71.489
2163
+ - type: mrr_at_1000
2164
+ value: 71.504
2165
+ - type: mrr_at_3
2166
+ value: 69.44399999999999
2167
+ - type: mrr_at_5
2168
+ value: 70.244
2169
+ - type: ndcg_at_1
2170
+ value: 62.0
2171
+ - type: ndcg_at_10
2172
+ value: 73.98599999999999
2173
+ - type: ndcg_at_100
2174
+ value: 76.629
2175
+ - type: ndcg_at_1000
2176
+ value: 77.054
2177
+ - type: ndcg_at_3
2178
+ value: 70.513
2179
+ - type: ndcg_at_5
2180
+ value: 71.978
2181
+ - type: precision_at_1
2182
+ value: 62.0
2183
+ - type: precision_at_10
2184
+ value: 9.633
2185
+ - type: precision_at_100
2186
+ value: 1.097
2187
+ - type: precision_at_1000
2188
+ value: 0.11299999999999999
2189
+ - type: precision_at_3
2190
+ value: 27.556000000000004
2191
+ - type: precision_at_5
2192
+ value: 17.666999999999998
2193
+ - type: recall_at_1
2194
+ value: 59.633
2195
+ - type: recall_at_10
2196
+ value: 85.52199999999999
2197
+ - type: recall_at_100
2198
+ value: 96.667
2199
+ - type: recall_at_1000
2200
+ value: 100.0
2201
+ - type: recall_at_3
2202
+ value: 75.767
2203
+ - type: recall_at_5
2204
+ value: 79.76100000000001
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.77821782178218
2216
+ - type: cos_sim_ap
2217
+ value: 94.58684455008866
2218
+ - type: cos_sim_f1
2219
+ value: 88.51282051282053
2220
+ - type: cos_sim_precision
2221
+ value: 90.84210526315789
2222
+ - type: cos_sim_recall
2223
+ value: 86.3
2224
+ - type: dot_accuracy
2225
+ value: 99.77623762376237
2226
+ - type: dot_ap
2227
+ value: 94.86277541733045
2228
+ - type: dot_f1
2229
+ value: 88.66897575457693
2230
+ - type: dot_precision
2231
+ value: 87.75710088148874
2232
+ - type: dot_recall
2233
+ value: 89.60000000000001
2234
+ - type: euclidean_accuracy
2235
+ value: 99.76732673267327
2236
+ - type: euclidean_ap
2237
+ value: 94.12114402691984
2238
+ - type: euclidean_f1
2239
+ value: 87.96804792810784
2240
+ - type: euclidean_precision
2241
+ value: 87.83649052841476
2242
+ - type: euclidean_recall
2243
+ value: 88.1
2244
+ - type: manhattan_accuracy
2245
+ value: 99.77227722772277
2246
+ - type: manhattan_ap
2247
+ value: 94.33665105240306
2248
+ - type: manhattan_f1
2249
+ value: 88.25587206396803
2250
+ - type: manhattan_precision
2251
+ value: 88.21178821178822
2252
+ - type: manhattan_recall
2253
+ value: 88.3
2254
+ - type: max_accuracy
2255
+ value: 99.77821782178218
2256
+ - type: max_ap
2257
+ value: 94.86277541733045
2258
+ - type: max_f1
2259
+ value: 88.66897575457693
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 72.03943478268592
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 35.285037897356496
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 51.83578447913503
2293
+ - type: mrr
2294
+ value: 52.69070696460402
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 30.89437612567638
2306
+ - type: cos_sim_spearman
2307
+ value: 30.7277819987126
2308
+ - type: dot_pearson
2309
+ value: 30.999783674122526
2310
+ - type: dot_spearman
2311
+ value: 30.992168551124905
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.22699999999999998
2323
+ - type: map_at_10
2324
+ value: 1.8950000000000002
2325
+ - type: map_at_100
2326
+ value: 11.712
2327
+ - type: map_at_1000
2328
+ value: 28.713
2329
+ - type: map_at_3
2330
+ value: 0.65
2331
+ - type: map_at_5
2332
+ value: 1.011
2333
+ - type: mrr_at_1
2334
+ value: 92.0
2335
+ - type: mrr_at_10
2336
+ value: 95.39999999999999
2337
+ - type: mrr_at_100
2338
+ value: 95.39999999999999
2339
+ - type: mrr_at_1000
2340
+ value: 95.39999999999999
2341
+ - type: mrr_at_3
2342
+ value: 95.0
2343
+ - type: mrr_at_5
2344
+ value: 95.39999999999999
2345
+ - type: ndcg_at_1
2346
+ value: 83.0
2347
+ - type: ndcg_at_10
2348
+ value: 76.658
2349
+ - type: ndcg_at_100
2350
+ value: 60.755
2351
+ - type: ndcg_at_1000
2352
+ value: 55.05
2353
+ - type: ndcg_at_3
2354
+ value: 82.961
2355
+ - type: ndcg_at_5
2356
+ value: 80.008
2357
+ - type: precision_at_1
2358
+ value: 90.0
2359
+ - type: precision_at_10
2360
+ value: 79.80000000000001
2361
+ - type: precision_at_100
2362
+ value: 62.019999999999996
2363
+ - type: precision_at_1000
2364
+ value: 24.157999999999998
2365
+ - type: precision_at_3
2366
+ value: 88.0
2367
+ - type: precision_at_5
2368
+ value: 83.6
2369
+ - type: recall_at_1
2370
+ value: 0.22699999999999998
2371
+ - type: recall_at_10
2372
+ value: 2.086
2373
+ - type: recall_at_100
2374
+ value: 15.262
2375
+ - type: recall_at_1000
2376
+ value: 51.800000000000004
2377
+ - type: recall_at_3
2378
+ value: 0.679
2379
+ - type: recall_at_5
2380
+ value: 1.0739999999999998
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 1.521
2392
+ - type: map_at_10
2393
+ value: 7.281
2394
+ - type: map_at_100
2395
+ value: 12.717
2396
+ - type: map_at_1000
2397
+ value: 14.266000000000002
2398
+ - type: map_at_3
2399
+ value: 3.62
2400
+ - type: map_at_5
2401
+ value: 4.7010000000000005
2402
+ - type: mrr_at_1
2403
+ value: 18.367
2404
+ - type: mrr_at_10
2405
+ value: 34.906
2406
+ - type: mrr_at_100
2407
+ value: 36.333
2408
+ - type: mrr_at_1000
2409
+ value: 36.348
2410
+ - type: mrr_at_3
2411
+ value: 29.592000000000002
2412
+ - type: mrr_at_5
2413
+ value: 33.367000000000004
2414
+ - type: ndcg_at_1
2415
+ value: 19.387999999999998
2416
+ - type: ndcg_at_10
2417
+ value: 18.523
2418
+ - type: ndcg_at_100
2419
+ value: 30.932
2420
+ - type: ndcg_at_1000
2421
+ value: 42.942
2422
+ - type: ndcg_at_3
2423
+ value: 18.901
2424
+ - type: ndcg_at_5
2425
+ value: 17.974999999999998
2426
+ - type: precision_at_1
2427
+ value: 20.408
2428
+ - type: precision_at_10
2429
+ value: 17.347
2430
+ - type: precision_at_100
2431
+ value: 6.898
2432
+ - type: precision_at_1000
2433
+ value: 1.482
2434
+ - type: precision_at_3
2435
+ value: 21.088
2436
+ - type: precision_at_5
2437
+ value: 19.184
2438
+ - type: recall_at_1
2439
+ value: 1.521
2440
+ - type: recall_at_10
2441
+ value: 13.406
2442
+ - type: recall_at_100
2443
+ value: 43.418
2444
+ - type: recall_at_1000
2445
+ value: 80.247
2446
+ - type: recall_at_3
2447
+ value: 4.673
2448
+ - type: recall_at_5
2449
+ value: 7.247000000000001
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 71.9084
2461
+ - type: ap
2462
+ value: 15.388385311898144
2463
+ - type: f1
2464
+ value: 55.760189174489426
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 62.399547255234864
2476
+ - type: f1
2477
+ value: 62.61398519525303
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 53.041094760846164
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 87.92394349406926
2500
+ - type: cos_sim_ap
2501
+ value: 79.93037248584875
2502
+ - type: cos_sim_f1
2503
+ value: 73.21063394683026
2504
+ - type: cos_sim_precision
2505
+ value: 70.99652949925633
2506
+ - type: cos_sim_recall
2507
+ value: 75.56728232189973
2508
+ - type: dot_accuracy
2509
+ value: 87.80473266972642
2510
+ - type: dot_ap
2511
+ value: 79.11055417163318
2512
+ - type: dot_f1
2513
+ value: 72.79587473273801
2514
+ - type: dot_precision
2515
+ value: 69.55058880076905
2516
+ - type: dot_recall
2517
+ value: 76.35883905013192
2518
+ - type: euclidean_accuracy
2519
+ value: 87.91202241163496
2520
+ - type: euclidean_ap
2521
+ value: 79.61955502404068
2522
+ - type: euclidean_f1
2523
+ value: 72.65956080647231
2524
+ - type: euclidean_precision
2525
+ value: 70.778083562672
2526
+ - type: euclidean_recall
2527
+ value: 74.64379947229551
2528
+ - type: manhattan_accuracy
2529
+ value: 87.7749299636407
2530
+ - type: manhattan_ap
2531
+ value: 79.33286131650932
2532
+ - type: manhattan_f1
2533
+ value: 72.44748412310699
2534
+ - type: manhattan_precision
2535
+ value: 67.43974533879036
2536
+ - type: manhattan_recall
2537
+ value: 78.25857519788919
2538
+ - type: max_accuracy
2539
+ value: 87.92394349406926
2540
+ - type: max_ap
2541
+ value: 79.93037248584875
2542
+ - type: max_f1
2543
+ value: 73.21063394683026
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 89.89987192921178
2555
+ - type: cos_sim_ap
2556
+ value: 87.49525152555509
2557
+ - type: cos_sim_f1
2558
+ value: 80.05039276715578
2559
+ - type: cos_sim_precision
2560
+ value: 77.15714285714286
2561
+ - type: cos_sim_recall
2562
+ value: 83.1690791499846
2563
+ - type: dot_accuracy
2564
+ value: 89.58163542515621
2565
+ - type: dot_ap
2566
+ value: 86.87353801172357
2567
+ - type: dot_f1
2568
+ value: 79.50204384986993
2569
+ - type: dot_precision
2570
+ value: 76.83522482401953
2571
+ - type: dot_recall
2572
+ value: 82.36064059131506
2573
+ - type: euclidean_accuracy
2574
+ value: 89.81255093724532
2575
+ - type: euclidean_ap
2576
+ value: 87.41058010369022
2577
+ - type: euclidean_f1
2578
+ value: 79.94095829233214
2579
+ - type: euclidean_precision
2580
+ value: 78.61396456751525
2581
+ - type: euclidean_recall
2582
+ value: 81.3135201724669
2583
+ - type: manhattan_accuracy
2584
+ value: 89.84553886754377
2585
+ - type: manhattan_ap
2586
+ value: 87.41173628281432
2587
+ - type: manhattan_f1
2588
+ value: 79.9051922079846
2589
+ - type: manhattan_precision
2590
+ value: 76.98016269444841
2591
+ - type: manhattan_recall
2592
+ value: 83.06128734216199
2593
+ - type: max_accuracy
2594
+ value: 89.89987192921178
2595
+ - type: max_ap
2596
+ value: 87.49525152555509
2597
+ - type: max_f1
2598
+ value: 80.05039276715578
2599
  ---