File size: 1,501 Bytes
1e6334d 3322df4 1e6334d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: gentzy
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
datasets:
- jtlowell/gentzy
---
# LoRA DreamBooth - jtlowell/gentzy-lora
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained on the concept prompt:
`gentzy`
Use this keyword to trigger your custom model in your prompts.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Usage
Make sure to upgrade diffusers to >= 0.19.0:
```
pip install diffusers --upgrade
```
In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:
```
pip install invisible_watermark transformers accelerate safetensors
```
To just use the base model, you can run:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
# This is where you load your trained weights
pipe.load_lora_weights('jtlowell/gentzy-lora')
pipe.to("cuda")
prompt = "A majestic gentzy jumping from a big stone at night"
image = pipe(prompt=prompt, num_inference_steps=50).images[0]
```
|