juancopi81 commited on
Commit
f680768
·
1 Parent(s): 44abe18

Training in progress epoch 0

Browse files
Files changed (3) hide show
  1. README.md +20 -37
  2. config.json +1 -1
  3. tf_model.h5 +1 -1
README.md CHANGED
@@ -1,69 +1,52 @@
1
  ---
2
  tags:
3
  - generated_from_keras_callback
4
- - music
5
  model-index:
6
  - name: juancopi81/mutopia_guitar_mmm
7
  results: []
8
- datasets:
9
- - juancopi81/mutopia_guitar_dataset
10
- widget:
11
- - text: "PIECE_START TIME_SIGNATURE=4_4 BPM=90 TRACK_START INST=0 DENSITY=2 BAR_START NOTE_ON=43"
12
- example_title: "Time signature 4/4, BPM=90, NOTE=G2"
13
  ---
14
 
15
- # juancopi81/mutopia_guitar_mmm
16
-
17
- Music generation could be approached similarly to language generation. There are many ways to represent music as text and then use a language model to create a model capable of music generation. For encoding MIDI files as text, I am using the excellent [implementation](https://github.com/AI-Guru/MMM-JSB) of Dr. Tristan Beheren of the paper: [MMM: Exploring Conditional Multi-Track Music Generation with the Transformer](https://arxiv.org/abs/2008.06048).
18
 
19
- This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [Mutopia Guitar Dataset](https://huggingface.co/datasets/juancopi81/mutopia_guitar_dataset). Use the widget to generate your piece, and then use [this notebook](https://colab.research.google.com/drive/14vlJwCvDmNH6SFfVuYY0Y18qTbaHEJCY?usp=sharing) to listen to the results (work in progress).
20
- I created the notebook as an adaptation of [the one created by Dr. Tristan Behrens](https://huggingface.co/TristanBehrens/js-fakes-4bars).
21
 
 
22
  It achieves the following results on the evaluation set:
23
- - Train Loss: 0.5837
24
- - Validation Loss: 1.5346
 
25
 
26
  ## Model description
27
 
28
- The model is GPT-2 loaded with the GPT2LMHeadModel architecture from Hugging Face. The context size is 256, and the vocabulary size is 588. The model uses a
29
- `WhitespaceSplit` pre-tokenizer. The [tokenizer](https://huggingface.co/juancopi81/mutopia_guitar_dataset_tokenizer) is also in the Hugging Face hub.
30
 
31
  ## Intended uses & limitations
32
 
33
- I built this model to learn more about how to use Hugging Face. I am implementing some of the parts of the [Hugging Face course](https://huggingface.co/course/chapter1/1) with a project that I find interesting.
34
- The main intention of this model is educational. I am creating a [series of notebooks](https://github.com/juancopi81/MMM_Mutopia_Guitar) where I show every step of the process:
35
- - Collecting the data
36
- - Pre-processing the data
37
- - Training a tokenizer from scratch
38
- - Fine-tuning a GPT-2 model
39
- - Building a Gradio app for the model
40
-
41
- I trained the model using the free version of Colab with a small dataset. Right now, it is heavily overfitting. My idea is to have a more extensive dataset of Guitar Music from Latinoamerica to train a new model similar to the Mutopia Guitar Model, using more GPU resources.
42
 
43
  ## Training and evaluation data
44
 
45
- I am training the model with [Mutopia Guitar Dataset](https://huggingface.co/datasets/juancopi81/mutopia_guitar_dataset). This dataset consists of the soloist guitar pieces of the [Mutopia Project](https://www.mutopiaproject.org/).
46
- The dataset mainly contains guitar music from western classical composers, such as Sor, Aguado, Carcassi, and Giuliani.
 
47
 
48
  ### Training hyperparameters
49
 
50
  The following hyperparameters were used during training:
51
- - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 9089, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
52
  - training_precision: mixed_float16
 
53
  ### Training results
 
54
  | Train Loss | Validation Loss | Epoch |
55
  |:----------:|:---------------:|:-----:|
56
- | 1.0705 | 1.3590 | 0 |
57
- | 0.8889 | 1.3702 | 1 |
58
- | 0.7588 | 1.3974 | 2 |
59
- | 0.7294 | 1.4813 | 3 |
60
- | 0.6263 | 1.5263 | 5 |
61
- | 0.5841 | 1.5263 | 6 |
62
- | 0.5844 | 1.5263 | 7 |
63
- | 0.5837 | 1.5346 | 8 |
64
 
65
  ### Framework versions
66
- - Transformers 4.21.3
 
67
  - TensorFlow 2.8.2
68
- - Datasets 2.4.0
69
  - Tokenizers 0.12.1
 
1
  ---
2
  tags:
3
  - generated_from_keras_callback
 
4
  model-index:
5
  - name: juancopi81/mutopia_guitar_mmm
6
  results: []
 
 
 
 
 
7
  ---
8
 
9
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
10
+ probably proofread and complete it, then remove this comment. -->
 
11
 
12
+ # juancopi81/mutopia_guitar_mmm
 
13
 
14
+ This model was trained from scratch on an unknown dataset.
15
  It achieves the following results on the evaluation set:
16
+ - Train Loss: 0.5798
17
+ - Validation Loss: 1.5411
18
+ - Epoch: 0
19
 
20
  ## Model description
21
 
22
+ More information needed
 
23
 
24
  ## Intended uses & limitations
25
 
26
+ More information needed
 
 
 
 
 
 
 
 
27
 
28
  ## Training and evaluation data
29
 
30
+ More information needed
31
+
32
+ ## Training procedure
33
 
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
+ - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-07, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-07, 'decay_steps': 5726, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
38
  - training_precision: mixed_float16
39
+
40
  ### Training results
41
+
42
  | Train Loss | Validation Loss | Epoch |
43
  |:----------:|:---------------:|:-----:|
44
+ | 0.5798 | 1.5411 | 0 |
45
+
 
 
 
 
 
 
46
 
47
  ### Framework versions
48
+
49
+ - Transformers 4.22.1
50
  - TensorFlow 2.8.2
51
+ - Datasets 2.5.1
52
  - Tokenizers 0.12.1
config.json CHANGED
@@ -32,7 +32,7 @@
32
  "max_length": 350
33
  }
34
  },
35
- "transformers_version": "4.22.0",
36
  "use_cache": true,
37
  "vocab_size": 588
38
  }
 
32
  "max_length": 350
33
  }
34
  },
35
+ "transformers_version": "4.22.1",
36
  "use_cache": true,
37
  "vocab_size": 588
38
  }
tf_model.h5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4f62fd02de91e2e2aab7b7f773b48ba762afd69e69b4d3c0cfaf205cb21a15c6
3
  size 345352296
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d5d509dbdd6d95998211d5f6f22a7c6e94e85021d3dc6a3c31f5fb690a0da8a
3
  size 345352296