Delete model.py
Browse files
model.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
# Load the dataset
|
2 |
-
df = pd.read_csv('data_larazon_publico_v2.csv')
|
3 |
-
|
4 |
-
# Define stopwords and stemmer for Spanish
|
5 |
-
stop_words = set(stopwords.words('spanish'))
|
6 |
-
stemmer = SnowballStemmer('spanish')
|
7 |
-
|
8 |
-
# Preprocess the text data
|
9 |
-
for i, row in df.iterrows():
|
10 |
-
# Tokenize the text
|
11 |
-
text = row['cuerpo']
|
12 |
-
tokens = word_tokenize(text.lower(), language='spanish')
|
13 |
-
|
14 |
-
# Remove stopwords, punctuation and stem the remaining words
|
15 |
-
stemmed_tokens = [stemmer.stem(token) for token in tokens if token not in stop_words and token.isalpha()]
|
16 |
-
|
17 |
-
# Rejoin the stemmed tokens into a string and update the DataFrame
|
18 |
-
df.at[i, 'cuerpo'] = ' '.join(stemmed_tokens)
|
19 |
-
|
20 |
-
# Preprocess the data for summarization
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained("it5/it5-base-news-summarization")
|
22 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-base-news-summarization")
|
23 |
-
max_input_length = 512
|
24 |
-
max_output_length = 128
|
25 |
-
|
26 |
-
input_ids = []
|
27 |
-
attention_masks = []
|
28 |
-
output_ids = []
|
29 |
-
|
30 |
-
for i in range(len(df)):
|
31 |
-
input_text = df.iloc[i]['cuerpo']
|
32 |
-
output_text = df.iloc[i]['cuerpo']
|
33 |
-
|
34 |
-
input_encoded = tokenizer.encode_plus(input_text, add_special_tokens=True,
|
35 |
-
max_length=max_input_length, pad_to_max_length=True,
|
36 |
-
return_attention_mask=True, return_tensors='pt')
|
37 |
-
output_encoded = tokenizer.encode_plus(output_text, add_special_tokens=True,
|
38 |
-
max_length=max_output_length, pad_to_max_length=True,
|
39 |
-
return_attention_mask=True, return_tensors='pt')
|
40 |
-
|
41 |
-
input_ids.append(input_encoded['input_ids'])
|
42 |
-
attention_masks.append(input_encoded['attention_mask'])
|
43 |
-
output_ids.append(output_encoded['input_ids'])
|
44 |
-
|
45 |
-
input_ids = torch.cat(input_ids, dim=0)
|
46 |
-
attention_masks = torch.cat(attention_masks, dim=0)
|
47 |
-
output_ids = torch.cat(output_ids, dim=0)
|
48 |
-
|
49 |
-
|
50 |
-
batch_size = 200
|
51 |
-
learning_rate = 2e-5
|
52 |
-
num_epochs = 1
|
53 |
-
|
54 |
-
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
55 |
-
scheduler = trf.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0,
|
56 |
-
num_training_steps=len(input_ids) // batch_size * num_epochs)
|
57 |
-
|
58 |
-
# Train the model
|
59 |
-
model.train()
|
60 |
-
for epoch in range(num_epochs):
|
61 |
-
for i in range(0, len(input_ids), batch_size):
|
62 |
-
batch_input_ids = input_ids[i:i+batch_size]
|
63 |
-
batch_attention_masks = attention_masks[i:i+batch_size]
|
64 |
-
batch_output_ids = output_ids[i:i+batch_size]
|
65 |
-
|
66 |
-
model.zero_grad()
|
67 |
-
|
68 |
-
outputs = model(input_ids=batch_input_ids, attention_mask=batch_attention_masks,
|
69 |
-
decoder_input_ids=batch_output_ids[:, :-1], labels=batch_output_ids[:, 1:].reshape(-1, 1))
|
70 |
-
loss = outputs[0]
|
71 |
-
|
72 |
-
loss.backward()
|
73 |
-
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
74 |
-
optimizer.step()
|
75 |
-
scheduler.step()
|
76 |
-
|
77 |
-
if i % 1000 == 0:
|
78 |
-
print(f"Epoch: {epoch+1}, Batch: {i+1}/{len(input_ids)}, Loss: {loss.item()}")
|
79 |
-
|
80 |
-
# Save the trained model
|
81 |
-
model.save_pretrained('/Users/Juanes/Downloads/summarization_model')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|