juanjucm's picture
Update README.md
4236973 verified
|
raw
history blame
2.14 kB
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
metrics:
  - wer
  - bleu
model-index:
  - name: whisper-large-v3-turbo-OpenSLR-GL
    results: []
datasets:
  - juanjucm/OpenSLR-SpeechT-GL-EN
language:
  - gl

whisper-large-v3-turbo-OpenSLR-GL

This model is a fine-tuned version of openai/whisper-large-v3-turbo on juanjucm/OpenSLR-SpeechT-GL-EN. It achieves the following results on the evaluation set:

  • Loss: 0.1613
  • Wer: 10.6845

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer
0.2739 1.0 75 0.1898 11.4023
0.1841 2.0 150 0.1819 10.3673
0.0542 3.0 225 0.1919 10.6177
0.0399 4.0 300 0.1934 11.1352
0.0264 5.0 375 0.2042 11.2688
0.0143 6.0 450 0.2075 10.3840
0.0056 7.0 525 0.2198 10.8347
0.0063 8.0 600 0.2217 10.9683
0.0037 9.0 675 0.2258 10.5509
0.0042 10.0 750 0.2278 10.6845

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0