--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer - bleu model-index: - name: whisper-large-v3-turbo-OpenSLR-GL results: [] datasets: - juanjucm/OpenSLR-SpeechT-GL-EN language: - gl --- # whisper-large-v3-turbo-OpenSLR-GL This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on [juanjucm/OpenSLR-SpeechT-GL-EN](https://huggingface.co/datasets/juanjucm/OpenSLR-SpeechT-GL-EN). It achieves the following results on the evaluation set: - Loss: 0.1613 - Wer: 10.6845 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2739 | 1.0 | 75 | 0.1898 | 11.4023 | | 0.1841 | 2.0 | 150 | 0.1819 | 10.3673 | | 0.0542 | 3.0 | 225 | 0.1919 | 10.6177 | | 0.0399 | 4.0 | 300 | 0.1934 | 11.1352 | | 0.0264 | 5.0 | 375 | 0.2042 | 11.2688 | | 0.0143 | 6.0 | 450 | 0.2075 | 10.3840 | | 0.0056 | 7.0 | 525 | 0.2198 | 10.8347 | | 0.0063 | 8.0 | 600 | 0.2217 | 10.9683 | | 0.0037 | 9.0 | 675 | 0.2258 | 10.5509 | | 0.0042 | 10.0 | 750 | 0.2278 | 10.6845 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0