--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer - bleu model-index: - name: whisper-small-GL-EN results: [] datasets: - juanjucm/FLEURS-SpeechT-GL-EN - juanjucm/OpenHQ-SpeechT-GL-EN language: - gl --- # whisper-small-GL-EN This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on [juanjucm/FLEURS-SpeechT-GL-EN](https://huggingface.co/datasets/juanjucm/FLEURS-SpeechT-GL-EN). The training dataset has been augmented using train split from [juanjucm/OpenHQ-SpeechT-GL-EN](https://huggingface.co/datasets/juanjucm/OpenHQ-SpeechT-GL-EN) It achieves the following results on the evaluation set (evaluated only on [juanjucm/FLEURS-SpeechT-GL-EN](https://huggingface.co/datasets/juanjucm/FLEURS-SpeechT-GL-EN)): - Loss: 1.6335 - Wer: 67.2612 - Bleu: 22.2158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.6816 | 1.0 | 236 | 1.6335 | 67.2612 | 22.2158 | | 0.1904 | 2.0 | 472 | 1.7234 | 69.9647 | 21.0583 | | 0.2177 | 3.0 | 708 | 1.8764 | 73.2720 | 19.0086 | | 0.0334 | 4.0 | 944 | 2.0541 | 72.6774 | 19.7679 | | 0.0129 | 5.0 | 1180 | 2.1722 | 70.6708 | 19.8076 | | 0.011 | 6.0 | 1416 | 2.2637 | 71.2653 | 19.7416 | | 0.0062 | 7.0 | 1652 | 2.3214 | 70.3920 | 20.3474 | | 0.0067 | 8.0 | 1888 | 2.3405 | 71.9621 | 20.1999 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0