--- language: - en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3877 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 datasets: [] metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 widget: - source_sentence: The "_fastdds_statistics_sample_datas" topic tracks the number of data messages or fragments sent by a DataWriter to deliver a single sample, excluding built-in and statistics DataWriters. sentences: - " If several new data changes are received at once, the callbacks may\n be triggered\ \ just once, instead of once per change. The application\n must keep *reading*\ \ or *taking* until no new changes are available." - 'The "_fastdds_statistics_sample_datas" statistics topic collects the number of user''s data messages (or data fragments in case that the message size is large enough to require RTPS fragmentation) that have been sent by the user''s DataWriter to completely deliver a single sample. This topic does not apply to builtin (related to Discovery) and statistics DataWriters.' - '+------------------------------------------------+-----------------------------------------+------------+-------------+ | Name | Description | Values | Default | |================================================|=========================================|============|=============| | "" | See DisableHeartbeatPiggyback. | "bool" | "false" | +------------------------------------------------+-----------------------------------------+------------+-------------+' - source_sentence: 'The "enable_statistics_datawriter_with_profile()" method enables a DataWriter by searching a specific XML profile, requiring two parameters: the name of the XML profile and the name of the statistics topic to be enabled.' sentences: - '"enable_statistics_datawriter_with_profile()" method requires as parameters:' - "* **FIELDNAME**: is a reference to a field in the data-structure. The\n dot\ \ \".\" is used to navigate through nested structures. The number of\n dots that\ \ may be used in a FIELDNAME is unlimited. The FIELDNAME can\n refer to fields\ \ at any depth in the data structure. The names of the\n field are those specified\ \ in the IDL definition of the corresponding\n structure." - " * The TopicQos describing the behavior of the Topic. If the\n provided\ \ value is \"TOPIC_QOS_DEFAULT\", the value of the Default\n TopicQos is used." - source_sentence: ' ParticipantResourceLimitsQos configures allocation limits and physical memory usage for internal resources, including locators, participants, readers, writers, send buffers, data limits, and content filter discovery information. ' sentences: - "* \"max_properties\": Defines the maximum size, in octets, of the\n properties\ \ data in the local or remote participant." - 'Log entries can be filtered upon consumption according to their Category component using regular expressions. Each time an entry is ready to be consumed, the category filter is applied using "std::regex_search()". To set a category filter, member function "Log::SetCategoryFilter()" is used:' - '"create_datawriter_with_profile()" will return a null pointer if there was an error during the operation, e.g. if the provided QoS is not compatible or is not supported. It is advisable to check that the returned value is a valid pointer.' - source_sentence: The Fast DDS Statistics module enables data collection and publication using DDS topics, which can be activated by setting "-DFASTDDS_STATISTICS=ON" during CMake configuration.> sentences: - ' "set_default_subscriber_qos()" member function also accepts the special value "SUBSCRIBER_QOS_DEFAULT" as input argument. This will reset the current default SubscriberQos to default constructed value "SubscriberQos()".' - '+------------------------------------------------------------------------------+-------------------------------------------+ | Data Member Name | Type | |==============================================================================|===========================================| | "last_instance_handle" | "InstanceHandle_t" | +------------------------------------------------------------------------------+-------------------------------------------+' - "Note: Please refer to Statistics QoS Troubleshooting for any problems\n related\ \ to the statistics module.\n" - source_sentence: The transport layer provides communication services between DDS entities, using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports. sentences: - '* **TCPv4**: TCP communication over IPv4 (see TCP Transport).' - 'The following table shows the supported primitive types and their corresponding "TypeKind". The "TypeKind" is used to query the DynamicTypeBuilderFactory for the specific primitive DynamicType.' - " @annotation MyAnnotation\n {\n long value;\n string name;\n\ \ };" pipeline_tag: sentence-similarity model-index: - name: BGE base Fast-DDS summaries results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.33410672853828305 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.44547563805104406 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5034802784222738 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5661252900232019 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.33410672853828305 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.14849187935034802 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10069605568445474 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05661252900232018 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.33410672853828305 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.44547563805104406 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5034802784222738 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5661252900232019 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4437291164486755 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.40535023754281285 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4159956670067687 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.33642691415313225 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.44779582366589327 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4965197215777262 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5777262180974478 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.33642691415313225 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.14926527455529776 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09930394431554523 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.057772621809744774 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.33642691415313225 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.44779582366589327 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4965197215777262 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5777262180974478 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.44632006141530195 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4056724855448751 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4154320968121733 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.3271461716937355 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.44779582366589327 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4988399071925754 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5754060324825986 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3271461716937355 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.14926527455529776 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09976798143851506 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05754060324825985 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3271461716937355 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.44779582366589327 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4988399071925754 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5754060324825986 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.44144646221433803 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3997293116782675 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.41051122365814446 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.31554524361948955 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.42923433874709976 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4802784222737819 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5754060324825986 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.31554524361948955 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1430781129156999 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09605568445475636 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05754060324825985 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.31554524361948955 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.42923433874709976 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4802784222737819 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5754060324825986 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4328383223462609 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.38895517990645573 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.39937008449735967 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.2853828306264501 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.41531322505800466 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.46867749419953597 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5568445475638051 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.2853828306264501 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.13843774168600154 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09373549883990717 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0556844547563805 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2853828306264501 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.41531322505800466 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.46867749419953597 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5568445475638051 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4098284836140229 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36409144477589944 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.37437465138771003 name: Cosine Map@100 --- # BGE base Fast-DDS summaries This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("juanlofer/bge-base-fastdds-summaries-20epochs-666seed") # Run inference sentences = [ 'The transport layer provides communication services between DDS entities, using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports.', '* **TCPv4**: TCP communication over IPv4 (see TCP Transport).', 'The following table shows the supported primitive types and their\ncorresponding "TypeKind". The "TypeKind" is used to query the\nDynamicTypeBuilderFactory for the specific primitive DynamicType.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.3341 | | cosine_accuracy@3 | 0.4455 | | cosine_accuracy@5 | 0.5035 | | cosine_accuracy@10 | 0.5661 | | cosine_precision@1 | 0.3341 | | cosine_precision@3 | 0.1485 | | cosine_precision@5 | 0.1007 | | cosine_precision@10 | 0.0566 | | cosine_recall@1 | 0.3341 | | cosine_recall@3 | 0.4455 | | cosine_recall@5 | 0.5035 | | cosine_recall@10 | 0.5661 | | cosine_ndcg@10 | 0.4437 | | cosine_mrr@10 | 0.4054 | | **cosine_map@100** | **0.416** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3364 | | cosine_accuracy@3 | 0.4478 | | cosine_accuracy@5 | 0.4965 | | cosine_accuracy@10 | 0.5777 | | cosine_precision@1 | 0.3364 | | cosine_precision@3 | 0.1493 | | cosine_precision@5 | 0.0993 | | cosine_precision@10 | 0.0578 | | cosine_recall@1 | 0.3364 | | cosine_recall@3 | 0.4478 | | cosine_recall@5 | 0.4965 | | cosine_recall@10 | 0.5777 | | cosine_ndcg@10 | 0.4463 | | cosine_mrr@10 | 0.4057 | | **cosine_map@100** | **0.4154** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3271 | | cosine_accuracy@3 | 0.4478 | | cosine_accuracy@5 | 0.4988 | | cosine_accuracy@10 | 0.5754 | | cosine_precision@1 | 0.3271 | | cosine_precision@3 | 0.1493 | | cosine_precision@5 | 0.0998 | | cosine_precision@10 | 0.0575 | | cosine_recall@1 | 0.3271 | | cosine_recall@3 | 0.4478 | | cosine_recall@5 | 0.4988 | | cosine_recall@10 | 0.5754 | | cosine_ndcg@10 | 0.4414 | | cosine_mrr@10 | 0.3997 | | **cosine_map@100** | **0.4105** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3155 | | cosine_accuracy@3 | 0.4292 | | cosine_accuracy@5 | 0.4803 | | cosine_accuracy@10 | 0.5754 | | cosine_precision@1 | 0.3155 | | cosine_precision@3 | 0.1431 | | cosine_precision@5 | 0.0961 | | cosine_precision@10 | 0.0575 | | cosine_recall@1 | 0.3155 | | cosine_recall@3 | 0.4292 | | cosine_recall@5 | 0.4803 | | cosine_recall@10 | 0.5754 | | cosine_ndcg@10 | 0.4328 | | cosine_mrr@10 | 0.389 | | **cosine_map@100** | **0.3994** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.2854 | | cosine_accuracy@3 | 0.4153 | | cosine_accuracy@5 | 0.4687 | | cosine_accuracy@10 | 0.5568 | | cosine_precision@1 | 0.2854 | | cosine_precision@3 | 0.1384 | | cosine_precision@5 | 0.0937 | | cosine_precision@10 | 0.0557 | | cosine_recall@1 | 0.2854 | | cosine_recall@3 | 0.4153 | | cosine_recall@5 | 0.4687 | | cosine_recall@10 | 0.5568 | | cosine_ndcg@10 | 0.4098 | | cosine_mrr@10 | 0.3641 | | **cosine_map@100** | **0.3744** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 20 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 20 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:-----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.6584 | 10 | 5.9441 | - | - | - | - | - | | 0.9877 | 15 | - | 0.3686 | 0.3792 | 0.3819 | 0.3414 | 0.3795 | | 1.3128 | 20 | 4.7953 | - | - | - | - | - | | 1.9712 | 30 | 3.77 | 0.3854 | 0.3963 | 0.3962 | 0.3682 | 0.3995 | | 2.6255 | 40 | 2.9211 | - | - | - | - | - | | 2.9547 | 45 | - | 0.3866 | 0.3919 | 0.3958 | 0.3759 | 0.3963 | | 3.2798 | 50 | 2.4548 | - | - | - | - | - | | 3.9383 | 60 | 2.0513 | - | - | - | - | - | | 4.0041 | 61 | - | 0.3808 | 0.4018 | 0.3980 | 0.3647 | 0.3962 | | 4.5926 | 70 | 1.5898 | - | - | - | - | - | | 4.9877 | 76 | - | 0.3829 | 0.4029 | 0.4035 | 0.3625 | 0.4014 | | 5.2469 | 80 | 1.4677 | - | - | - | - | - | | 5.9053 | 90 | 1.1974 | - | - | - | - | - | | 5.9712 | 91 | - | 0.3918 | 0.4006 | 0.4041 | 0.3654 | 0.4033 | | 6.5597 | 100 | 0.9285 | - | - | - | - | - | | 6.9547 | 106 | - | 0.3914 | 0.4019 | 0.4033 | 0.3678 | 0.4014 | | 7.2140 | 110 | 0.9214 | - | - | - | - | - | | 7.8724 | 120 | 0.8141 | - | - | - | - | - | | 8.0041 | 122 | - | 0.3914 | 0.3993 | 0.4071 | 0.3670 | 0.4027 | | 8.5267 | 130 | 0.6706 | - | - | - | - | - | | 8.9877 | 137 | - | 0.3903 | 0.4033 | 0.4060 | 0.3721 | 0.4060 | | 9.1811 | 140 | 0.6388 | - | - | - | - | - | | 9.8395 | 150 | 0.5466 | - | - | - | - | - | | 9.9712 | 152 | - | 0.3915 | 0.4020 | 0.4079 | 0.3673 | 0.4046 | | 10.4938 | 160 | 0.466 | - | - | - | - | - | | 10.9547 | 167 | - | 0.3963 | 0.4069 | 0.4112 | 0.3697 | 0.4078 | | 11.1481 | 170 | 0.4709 | - | - | - | - | - | | 11.8066 | 180 | 0.437 | - | - | - | - | - | | 12.0041 | 183 | - | 0.4003 | 0.4051 | 0.4096 | 0.3701 | 0.4059 | | 12.4609 | 190 | 0.3678 | - | - | - | - | - | | 12.9877 | 198 | - | 0.3976 | 0.4075 | 0.4088 | 0.3713 | 0.4080 | | 13.1152 | 200 | 0.3944 | - | - | - | - | - | | 13.7737 | 210 | 0.361 | - | - | - | - | - | | 13.9712 | 213 | - | 0.3966 | 0.4091 | 0.4096 | 0.3724 | 0.4107 | | 14.4280 | 220 | 0.2977 | - | - | - | - | - | | 14.9547 | 228 | - | 0.3979 | 0.4102 | 0.4149 | 0.3744 | 0.4143 | | 15.0823 | 230 | 0.3306 | - | - | - | - | - | | 15.7407 | 240 | 0.3075 | - | - | - | - | - | | **16.0041** | **244** | **-** | **0.3991** | **0.4102** | **0.4156** | **0.3726** | **0.4148** | | 16.3951 | 250 | 0.2777 | - | - | - | - | - | | 16.9877 | 259 | - | 0.3990 | 0.4101 | 0.4154 | 0.3743 | 0.4167 | | 17.0494 | 260 | 0.3044 | - | - | - | - | - | | 17.7078 | 270 | 0.2885 | - | - | - | - | - | | 17.9712 | 274 | - | 0.3991 | 0.4099 | 0.4153 | 0.3746 | 0.4167 | | 18.3621 | 280 | 0.2862 | - | - | - | - | - | | 18.9547 | 289 | - | 0.3994 | 0.4105 | 0.4154 | 0.3743 | 0.4156 | | 19.0165 | 290 | 0.2974 | - | - | - | - | - | | 19.6749 | 300 | 0.2648 | 0.3994 | 0.4105 | 0.4154 | 0.3744 | 0.4160 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```