juanmi1234 commited on
Commit
9bc19f1
·
1 Parent(s): 87fa338

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1778.18 +/- 427.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7013d22a8ae7544b4471339f2c7068e481adda4c76ed315d85374a76eae7c914
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbbb9d848b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbbb9d84940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbbb9d849d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbbb9d84a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbbb9d84af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbbb9d84b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbbb9d84c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbbb9d84ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbbb9d84d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbbb9d84dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbbb9d84e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbbb9d84ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fbbb9d7f870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677552713899054390,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFTlHT9WRq6/WBEEvucbuz/PkZm/ilDbvSLsrr0QNz2/TpR5Pvr5ZEBEro0/AqVRPlUitL+SAdM9MTPxvmRZxD5Gozu/c0q5vsD7cj4t2eo/swm7vteGuj+5aVK/fgl3vMisYj/XwPA+le4EP7+nmr96F2A+3hbjupxlGz8VV6I/WnWkvpxWmD8dPNE+NVhAvY/X8z6dqsc91sJIvqcHAMCCzuq+YIeVP8m2Eb9uU28/vJzKPRLKlz9dXsY+xhlEPI5pS76doOm+MtgXvHMrHD83j5C/18DwPoWA9r+x4FM/Z4EPP0VKWrwSjRs/qLXHP+eCnr49oYO/kxZuPydNGD7HzTY/tKxyv88Atj+lH3y/u1qYvyF0iz8v8Wm/rOEWv12QJr+rT6I+++g4Pl7BOD+Kv4G+J7gSQNqdG7/7XJ4/yKxiPywbCMCV7gQ/v6eav55oer8lvns/BWAJPns2mL9xua2/ronCv+rtu75Bsss+jQ0KwD+NgT4slwm/xByBv80Ph77cKUw+etYcP/4IKD823tK/BvroPtiUOz7mHMI+qYt1Pj65mT8peCe/Vq+GP8isYj/XwPA+le4EP7+nmr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA4KCY3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFrzqvQAAAABXDAHAAAAAAI/FDj4AAAAAL7b3PwAAAAAvZyo9AAAAAOFC/z8AAAAAp6n/vQAAAAAJeuS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM+kvtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMLoIr0AAAAAPbfvvwAAAADwzvg8AAAAAGf+9j8AAAAAOjK2vQAAAADoR9w/AAAAAC6+sj0AAAAAbjTdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANe/lLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID++569AAAAAIhZAMAAAAAABI77vQAAAAAIB/4/AAAAAPkYCL0AAAAAzRD/PwAAAACFSOw9AAAAAGOp+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0Q9k2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALywpvQAAAAB78wDAAAAAAM69gj0AAAAAvq3ePwAAAABQoOQ9AAAAAK1i2z8AAAAA+86EvQAAAACbsfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJn3GYKIBR2MAWyUTegDjAF0lEdArK85m/WUbHV9lChoBkdAmqFs7ZFoc2gHTegDaAhHQKy1OmtyPuJ1fZQoaAZHQJkzh46fapRoB03oA2gIR0CstX4OUdJbdX2UKGgGR0CfZfdpqREGaAdN6ANoCEdArLi36AOJ+HV9lChoBkdAmhiumvW6LGgHTegDaAhHQKy9vOP/7zl1fZQoaAZHQJwgTujRD1JoB03oA2gIR0CsxT4BNmDldX2UKGgGR0CdwyXUH6dlaAdN6ANoCEdArMV/q1PWQXV9lChoBkdAnRvkS26TXGgHTegDaAhHQKzIa3H7xd91fZQoaAZHQJsnWSZBsyloB03oA2gIR0Csy63pfQa8dX2UKGgGR0Ca/Jlme18caAdN6ANoCEdArNGhJbt7bHV9lChoBkdAmrKcd92HL2gHTegDaAhHQKzR5t0FKTV1fZQoaAZHQJkAY8gZCOZoB03oA2gIR0Cs1NDe9Ba+dX2UKGgGR0CEBRZuhsZYaAdN6ANoCEdArNj5AbADaHV9lChoBkdAnGqTQzDXOGgHTegDaAhHQKzhrgx8D0V1fZQoaAZHQJtBBGTcIqtoB03oA2gIR0Cs4fQNCqp+dX2UKGgGR0CZ7VrJbMX8aAdN6ANoCEdArOTiQzUI9nV9lChoBkdAli+pf6XSjWgHTegDaAhHQKzoM00m+kB1fZQoaAZHQJvo35XU6PtoB03oA2gIR0Cs7jbQb+98dX2UKGgGR0Cd2aVZs9B9aAdN6ANoCEdArO5+TcIqsnV9lChoBkdAm59DGxUvPGgHTegDaAhHQKzxln7Hhjx1fZQoaAZHQIBF+7xusLhoB03oA2gIR0Cs9SaOPvKEdX2UKGgGR0CW/JwHqu8saAdN6ANoCEdArP4j0+TvA3V9lChoBkdAltB+FcpsoGgHTegDaAhHQKz+kxC6Ymd1fZQoaAZHQJqDoaaTfSBoB03oA2gIR0CtAxPn8sMBdX2UKGgGR0CYz7smv4dqaAdN6ANoCEdArQhmC9RJmXV9lChoBkdAltWStRvWH2gHTegDaAhHQK0PFsoDxLF1fZQoaAZHQJiP8Ft8/lhoB03oA2gIR0CtD17x/d6+dX2UKGgGR0CL0ZOkcjqwaAdN6ANoCEdArRJm+9Jz1nV9lChoBkdAmKARbnoxH2gHTegDaAhHQK0WyTBZZB91fZQoaAZHQJx1F9b5dnloB03oA2gIR0CtH4sgEEDAdX2UKGgGR0Ccl4+C9RJmaAdN6ANoCEdArR/PavicXnV9lChoBkdAnrZsbrC3w2gHTegDaAhHQK0iyjVQQ+V1fZQoaAZHQKAWtdVvMr5oB03oA2gIR0CtJj04R28qdX2UKGgGR0Bty0vTPSlWaAdN6ANoCEdArSxScVgx8HV9lChoBkdAoC/Xy08eS2gHTegDaAhHQK0slCcf/3p1fZQoaAZHQJHfc3m3fANoB03oA2gIR0CtL4hmf5DadX2UKGgGR0Ca7wJvHcUNaAdN6ANoCEdArTMTuSfUWnV9lChoBkdAdUtIKMNtqGgHTegDaAhHQK08Bn6Eal11fZQoaAZHQI9e15Qgs9VoB03oA2gIR0CtPHjzI3irdX2UKGgGR0CZXVrxRVIaaAdN6ANoCEdArT+yu0TlDHV9lChoBkdAnBRvwuuie2gHTegDaAhHQK1DDkIX0oV1fZQoaAZHQIzggO+ZgG9oB03oA2gIR0CtSOwTEit8dX2UKGgGR0CXdTIcR15jaAdN6ANoCEdArUkvkWAPNHV9lChoBkdAkbrpYT0xumgHTegDaAhHQK1MIxs2vSt1fZQoaAZHQJmi6lqJuVJoB03oA2gIR0CtT3Ve0G/vdX2UKGgGR0CE0VY9Pk7waAdN6ANoCEdArVdU+TvAoHV9lChoBkdAmEb91ZDArWgHTegDaAhHQK1XuttALRd1fZQoaAZHQJ1xcJOWSlpoB03oA2gIR0CtXClSS/0vdX2UKGgGR0Ca8fXVbzK+aAdN6ANoCEdArV9xRbbDdnV9lChoBkdAmM/4kRjBmGgHTegDaAhHQK1lQYfnwG51fZQoaAZHQJi2P/T9bX9oB03oA2gIR0CtZYTUI9kjdX2UKGgGR0CUB4C8OCoTaAdN6ANoCEdArWhw9zOopHV9lChoBkdAk2E0W69TP2gHTegDaAhHQK1r0BRQ7911fZQoaAZHQJjQdUJfICFoB03oA2gIR0CtcmCvX9R8dX2UKGgGR0CZHJDIRywOaAdN6ANoCEdArXLFRpDeCXV9lChoBkdAhqlBeHBUJmgHTegDaAhHQK13OK77Kq51fZQoaAZHQJo9pOTJQtVoB03oA2gIR0Cte8G1QZXNdX2UKGgGR0CfZmJUYKplaAdN6ANoCEdArYHEoc7yQXV9lChoBkdAm39t12aDw2gHTegDaAhHQK2CCC4jKPp1fZQoaAZHQJ8KJgVoHs1oB03oA2gIR0CthP0dBBzFdX2UKGgGR0CdbSTd+G47aAdN6ANoCEdArYhlhqj8DXV9lChoBkdAl6PMAmzBymgHTegDaAhHQK2OZtelbeN1fZQoaAZHQJgDaLMs6JZoB03oA2gIR0CtjrLlvIfbdX2UKGgGR0CZxC3h4t6HaAdN6ANoCEdArZMUeXAuZnV9lChoBkdAlAYQ3HaN/GgHTegDaAhHQK2YkkGiYb91fZQoaAZHQJEo9FUhmoRoB03oA2gIR0CtnvAUUO/ddX2UKGgGR0CdNn8P4EfUaAdN6ANoCEdArZ8z28IzFnV9lChoBkdAmd7nKSxJNGgHTegDaAhHQK2iPM5fdAR1fZQoaAZHQJOhCAkLQX1oB03oA2gIR0CtpbMspXp4dX2UKGgGR0CRoUslsxfwaAdN6ANoCEdArauo3irDInV9lChoBkdAmoOFY+0PYmgHTegDaAhHQK2r7EgGKQ91fZQoaAZHQJTsQroW56NoB03oA2gIR0Ctr4xNyo4udX2UKGgGR0CYFDWY4Qz2aAdN6ANoCEdArbSNorWiDnV9lChoBkdAnqJJwS8J2WgHTegDaAhHQK27oqpcX3x1fZQoaAZHQJiBWZDzAetoB03oA2gIR0Ctu+dAX2ugdX2UKGgGR0CdPnmq5sj3aAdN6ANoCEdArb7ejqOcUnV9lChoBkdAnPKhyjpLVWgHTegDaAhHQK3CSCRwIdF1fZQoaAZHQJtS/tVrAQBoB03oA2gIR0CtyDaGgzxgdX2UKGgGR0Cco9X5WRzSaAdN6ANoCEdArch3r6ciGHV9lChoBkdAmIw5Zr56+mgHTegDaAhHQK3Lbu4wyqN1fZQoaAZHQJ41WEwnH/9oB03oA2gIR0Ct0CqR+z+ndX2UKGgGR0CdoflUp/gBaAdN6ANoCEdArdhgeYD1XnV9lChoBkdAmMIisjmjkGgHTegDaAhHQK3YohzNliB1fZQoaAZHQJiWqxUvPC5oB03oA2gIR0Ct25zAnDzidX2UKGgGR0CeXiRh+fAcaAdN6ANoCEdArd8YKBun/HV9lChoBkdAki8GYjSofmgHTegDaAhHQK3lC+HJtBR1fZQoaAZHQIgD2YtxuKpoB03oA2gIR0Ct5VEWhysCdX2UKGgGR0CLA4kC3gDSaAdN6ANoCEdAreh2uHN5dHV9lChoBkdAli7TOxB3R2gHTegDaAhHQK3scckMTex1fZQoaAZHQJG4O4J/oaFoB03oA2gIR0Ct9Uu+AVfvdX2UKGgGR0CaBKHVwxWUaAdN6ANoCEdArfWUBltj1HV9lChoBkdAkMhY+r2g4GgHTegDaAhHQK34h9H+ZPV1fZQoaAZHQJxgAOrhispoB03oA2gIR0Ct+/c9wFTvdX2UKGgGR0CRTudwvQF+aAdN6ANoCEdArgHd+qioKnV9lChoBkdAmmXcpPRAr2gHTegDaAhHQK4CH5yEL6V1fZQoaAZHQJjiLKs+3YtoB03oA2gIR0CuBRt2cJ+ldX2UKGgGR0CWghvMKTjeaAdN6ANoCEdArgiEt7KJVXV9lChoBkdAl5uZs0pEyGgHTegDaAhHQK4RO11nuiN1fZQoaAZHQJu+QJa7mMhoB03oA2gIR0CuEaR3NcGDdX2UKGgGR0CdSHW8AaNuaAdN6ANoCEdArhVYpazNU3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:527472ac87f0981eb7d2801552315d6b29256fdb38a55a4bbfea5fac58f077d9
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9d047ca9a9c2052ae87ea634b90b0a28fdf51a21598a41fb36cba5d3d20bf7c
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbbb9d848b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbbb9d84940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbbb9d849d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbbb9d84a60>", "_build": "<function ActorCriticPolicy._build at 0x7fbbb9d84af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbbb9d84b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbbb9d84c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbbb9d84ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbbb9d84d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbbb9d84dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbbb9d84e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbbb9d84ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbbb9d7f870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677552713899054390, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFTlHT9WRq6/WBEEvucbuz/PkZm/ilDbvSLsrr0QNz2/TpR5Pvr5ZEBEro0/AqVRPlUitL+SAdM9MTPxvmRZxD5Gozu/c0q5vsD7cj4t2eo/swm7vteGuj+5aVK/fgl3vMisYj/XwPA+le4EP7+nmr96F2A+3hbjupxlGz8VV6I/WnWkvpxWmD8dPNE+NVhAvY/X8z6dqsc91sJIvqcHAMCCzuq+YIeVP8m2Eb9uU28/vJzKPRLKlz9dXsY+xhlEPI5pS76doOm+MtgXvHMrHD83j5C/18DwPoWA9r+x4FM/Z4EPP0VKWrwSjRs/qLXHP+eCnr49oYO/kxZuPydNGD7HzTY/tKxyv88Atj+lH3y/u1qYvyF0iz8v8Wm/rOEWv12QJr+rT6I+++g4Pl7BOD+Kv4G+J7gSQNqdG7/7XJ4/yKxiPywbCMCV7gQ/v6eav55oer8lvns/BWAJPns2mL9xua2/ronCv+rtu75Bsss+jQ0KwD+NgT4slwm/xByBv80Ph77cKUw+etYcP/4IKD823tK/BvroPtiUOz7mHMI+qYt1Pj65mT8peCe/Vq+GP8isYj/XwPA+le4EP7+nmr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA4KCY3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFrzqvQAAAABXDAHAAAAAAI/FDj4AAAAAL7b3PwAAAAAvZyo9AAAAAOFC/z8AAAAAp6n/vQAAAAAJeuS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM+kvtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMLoIr0AAAAAPbfvvwAAAADwzvg8AAAAAGf+9j8AAAAAOjK2vQAAAADoR9w/AAAAAC6+sj0AAAAAbjTdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANe/lLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID++569AAAAAIhZAMAAAAAABI77vQAAAAAIB/4/AAAAAPkYCL0AAAAAzRD/PwAAAACFSOw9AAAAAGOp+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0Q9k2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALywpvQAAAAB78wDAAAAAAM69gj0AAAAAvq3ePwAAAABQoOQ9AAAAAK1i2z8AAAAA+86EvQAAAACbsfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJn3GYKIBR2MAWyUTegDjAF0lEdArK85m/WUbHV9lChoBkdAmqFs7ZFoc2gHTegDaAhHQKy1OmtyPuJ1fZQoaAZHQJkzh46fapRoB03oA2gIR0CstX4OUdJbdX2UKGgGR0CfZfdpqREGaAdN6ANoCEdArLi36AOJ+HV9lChoBkdAmhiumvW6LGgHTegDaAhHQKy9vOP/7zl1fZQoaAZHQJwgTujRD1JoB03oA2gIR0CsxT4BNmDldX2UKGgGR0CdwyXUH6dlaAdN6ANoCEdArMV/q1PWQXV9lChoBkdAnRvkS26TXGgHTegDaAhHQKzIa3H7xd91fZQoaAZHQJsnWSZBsyloB03oA2gIR0Csy63pfQa8dX2UKGgGR0Ca/Jlme18caAdN6ANoCEdArNGhJbt7bHV9lChoBkdAmrKcd92HL2gHTegDaAhHQKzR5t0FKTV1fZQoaAZHQJkAY8gZCOZoB03oA2gIR0Cs1NDe9Ba+dX2UKGgGR0CEBRZuhsZYaAdN6ANoCEdArNj5AbADaHV9lChoBkdAnGqTQzDXOGgHTegDaAhHQKzhrgx8D0V1fZQoaAZHQJtBBGTcIqtoB03oA2gIR0Cs4fQNCqp+dX2UKGgGR0CZ7VrJbMX8aAdN6ANoCEdArOTiQzUI9nV9lChoBkdAli+pf6XSjWgHTegDaAhHQKzoM00m+kB1fZQoaAZHQJvo35XU6PtoB03oA2gIR0Cs7jbQb+98dX2UKGgGR0Cd2aVZs9B9aAdN6ANoCEdArO5+TcIqsnV9lChoBkdAm59DGxUvPGgHTegDaAhHQKzxln7Hhjx1fZQoaAZHQIBF+7xusLhoB03oA2gIR0Cs9SaOPvKEdX2UKGgGR0CW/JwHqu8saAdN6ANoCEdArP4j0+TvA3V9lChoBkdAltB+FcpsoGgHTegDaAhHQKz+kxC6Ymd1fZQoaAZHQJqDoaaTfSBoB03oA2gIR0CtAxPn8sMBdX2UKGgGR0CYz7smv4dqaAdN6ANoCEdArQhmC9RJmXV9lChoBkdAltWStRvWH2gHTegDaAhHQK0PFsoDxLF1fZQoaAZHQJiP8Ft8/lhoB03oA2gIR0CtD17x/d6+dX2UKGgGR0CL0ZOkcjqwaAdN6ANoCEdArRJm+9Jz1nV9lChoBkdAmKARbnoxH2gHTegDaAhHQK0WyTBZZB91fZQoaAZHQJx1F9b5dnloB03oA2gIR0CtH4sgEEDAdX2UKGgGR0Ccl4+C9RJmaAdN6ANoCEdArR/PavicXnV9lChoBkdAnrZsbrC3w2gHTegDaAhHQK0iyjVQQ+V1fZQoaAZHQKAWtdVvMr5oB03oA2gIR0CtJj04R28qdX2UKGgGR0Bty0vTPSlWaAdN6ANoCEdArSxScVgx8HV9lChoBkdAoC/Xy08eS2gHTegDaAhHQK0slCcf/3p1fZQoaAZHQJHfc3m3fANoB03oA2gIR0CtL4hmf5DadX2UKGgGR0Ca7wJvHcUNaAdN6ANoCEdArTMTuSfUWnV9lChoBkdAdUtIKMNtqGgHTegDaAhHQK08Bn6Eal11fZQoaAZHQI9e15Qgs9VoB03oA2gIR0CtPHjzI3irdX2UKGgGR0CZXVrxRVIaaAdN6ANoCEdArT+yu0TlDHV9lChoBkdAnBRvwuuie2gHTegDaAhHQK1DDkIX0oV1fZQoaAZHQIzggO+ZgG9oB03oA2gIR0CtSOwTEit8dX2UKGgGR0CXdTIcR15jaAdN6ANoCEdArUkvkWAPNHV9lChoBkdAkbrpYT0xumgHTegDaAhHQK1MIxs2vSt1fZQoaAZHQJmi6lqJuVJoB03oA2gIR0CtT3Ve0G/vdX2UKGgGR0CE0VY9Pk7waAdN6ANoCEdArVdU+TvAoHV9lChoBkdAmEb91ZDArWgHTegDaAhHQK1XuttALRd1fZQoaAZHQJ1xcJOWSlpoB03oA2gIR0CtXClSS/0vdX2UKGgGR0Ca8fXVbzK+aAdN6ANoCEdArV9xRbbDdnV9lChoBkdAmM/4kRjBmGgHTegDaAhHQK1lQYfnwG51fZQoaAZHQJi2P/T9bX9oB03oA2gIR0CtZYTUI9kjdX2UKGgGR0CUB4C8OCoTaAdN6ANoCEdArWhw9zOopHV9lChoBkdAk2E0W69TP2gHTegDaAhHQK1r0BRQ7911fZQoaAZHQJjQdUJfICFoB03oA2gIR0CtcmCvX9R8dX2UKGgGR0CZHJDIRywOaAdN6ANoCEdArXLFRpDeCXV9lChoBkdAhqlBeHBUJmgHTegDaAhHQK13OK77Kq51fZQoaAZHQJo9pOTJQtVoB03oA2gIR0Cte8G1QZXNdX2UKGgGR0CfZmJUYKplaAdN6ANoCEdArYHEoc7yQXV9lChoBkdAm39t12aDw2gHTegDaAhHQK2CCC4jKPp1fZQoaAZHQJ8KJgVoHs1oB03oA2gIR0CthP0dBBzFdX2UKGgGR0CdbSTd+G47aAdN6ANoCEdArYhlhqj8DXV9lChoBkdAl6PMAmzBymgHTegDaAhHQK2OZtelbeN1fZQoaAZHQJgDaLMs6JZoB03oA2gIR0CtjrLlvIfbdX2UKGgGR0CZxC3h4t6HaAdN6ANoCEdArZMUeXAuZnV9lChoBkdAlAYQ3HaN/GgHTegDaAhHQK2YkkGiYb91fZQoaAZHQJEo9FUhmoRoB03oA2gIR0CtnvAUUO/ddX2UKGgGR0CdNn8P4EfUaAdN6ANoCEdArZ8z28IzFnV9lChoBkdAmd7nKSxJNGgHTegDaAhHQK2iPM5fdAR1fZQoaAZHQJOhCAkLQX1oB03oA2gIR0CtpbMspXp4dX2UKGgGR0CRoUslsxfwaAdN6ANoCEdArauo3irDInV9lChoBkdAmoOFY+0PYmgHTegDaAhHQK2r7EgGKQ91fZQoaAZHQJTsQroW56NoB03oA2gIR0Ctr4xNyo4udX2UKGgGR0CYFDWY4Qz2aAdN6ANoCEdArbSNorWiDnV9lChoBkdAnqJJwS8J2WgHTegDaAhHQK27oqpcX3x1fZQoaAZHQJiBWZDzAetoB03oA2gIR0Ctu+dAX2ugdX2UKGgGR0CdPnmq5sj3aAdN6ANoCEdArb7ejqOcUnV9lChoBkdAnPKhyjpLVWgHTegDaAhHQK3CSCRwIdF1fZQoaAZHQJtS/tVrAQBoB03oA2gIR0CtyDaGgzxgdX2UKGgGR0Cco9X5WRzSaAdN6ANoCEdArch3r6ciGHV9lChoBkdAmIw5Zr56+mgHTegDaAhHQK3Lbu4wyqN1fZQoaAZHQJ41WEwnH/9oB03oA2gIR0Ct0CqR+z+ndX2UKGgGR0CdoflUp/gBaAdN6ANoCEdArdhgeYD1XnV9lChoBkdAmMIisjmjkGgHTegDaAhHQK3YohzNliB1fZQoaAZHQJiWqxUvPC5oB03oA2gIR0Ct25zAnDzidX2UKGgGR0CeXiRh+fAcaAdN6ANoCEdArd8YKBun/HV9lChoBkdAki8GYjSofmgHTegDaAhHQK3lC+HJtBR1fZQoaAZHQIgD2YtxuKpoB03oA2gIR0Ct5VEWhysCdX2UKGgGR0CLA4kC3gDSaAdN6ANoCEdAreh2uHN5dHV9lChoBkdAli7TOxB3R2gHTegDaAhHQK3scckMTex1fZQoaAZHQJG4O4J/oaFoB03oA2gIR0Ct9Uu+AVfvdX2UKGgGR0CaBKHVwxWUaAdN6ANoCEdArfWUBltj1HV9lChoBkdAkMhY+r2g4GgHTegDaAhHQK34h9H+ZPV1fZQoaAZHQJxgAOrhispoB03oA2gIR0Ct+/c9wFTvdX2UKGgGR0CRTudwvQF+aAdN6ANoCEdArgHd+qioKnV9lChoBkdAmmXcpPRAr2gHTegDaAhHQK4CH5yEL6V1fZQoaAZHQJjiLKs+3YtoB03oA2gIR0CuBRt2cJ+ldX2UKGgGR0CWghvMKTjeaAdN6ANoCEdArgiEt7KJVXV9lChoBkdAl5uZs0pEyGgHTegDaAhHQK4RO11nuiN1fZQoaAZHQJu+QJa7mMhoB03oA2gIR0CuEaR3NcGDdX2UKGgGR0CdSHW8AaNuaAdN6ANoCEdArhVYpazNU3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a924c7e1a5f943fe963dd892441ff0b32597db5589fe620e168376b48e80332
3
+ size 1046555
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1778.1780977135525, "std_reward": 427.0496189078011, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T04:16:50.863736"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcaa11359d8e13cc49b7e0fd2d2ca5ccb55f9f4fa93e1392afcca6f6d3ba916c
3
+ size 2136