juansebashr commited on
Commit
9ea3581
·
1 Parent(s): 1022209

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1111.72 +/- 175.63
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a21856dfff28305e1d599ccc29817d26ef394afc9c7876e8666461f070aa92f2
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb566784820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5667848b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb566784940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5667849d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb566784a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb566784af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb566784b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb566784c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb566784ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb566784d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb566784dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb566784e50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb5667860c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678765240003736130,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIEdVD/TXXS/nu7mPgSfxj/RFcs/evMBwFA1HT8Ff56/fK43P2U5MLyIZqY/WHBbQMP2RT8Ic3m/q3czP6n1sjzhkjE/A2xav68s5j7NX20/wPTMvlq1Bj9mNrm+QVBSwA/Nib/jZwk/9jYgP+Pzlr/8vpm/Zn9nPAKkJD+yTtS+h52FviJFkT7bu7Y8hjk1PjSYGT96Wea+7X6pvk6eAD6DfE6+biqIv2mIAz9CVyu+s11rPksuIr81yAk/J++wPSFQI7+Nlqc+IKs2v9cIbrzLym0/42cJP/Y2ID/j85a/c2QlP+Dds79nHHI92mk/P9I1sDzv+Xw/AwCvvk52DL+6ojc/8v0JvK8QRL8Fs5Y9TNm9viAuTT9XRGY+k4WuP8T3bz/abDw/2F3vPgybX79kRBu/K4+5vw9znz8u85G+D82Jv+NnCT+Khsy/GxNZP+2sSr8uyu6/bjw5vyOwDT85ysS+ABG3vxQEHr6QjXe+KsEvP4kAir5Bsrm+XTPcPzatWb/B9Za/rM40P/mh+ryp2zU+1+F5vxuy9D7qPps+mWjtvkH9Rr8F2gW/DqcFwA/Nib/hee6/9jYgP+Pzlr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEPjg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0sIbvQAAAAC0V+i/AAAAAH72hjsAAAAA7c/mPwAAAACC8Rk9AAAAAGbr3z8AAAAAc6BGPQAAAAD2fOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOPCWtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDKQh70AAAAAXBP+vwAAAABMAAC+AAAAAFgu5D8AAAAAx5KMvQAAAABpgN8/AAAAANfAjz0AAAAACbv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMWWibYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJj2c9AAAAAAzx678AAAAAeIQGvgAAAACaEgFAAAAAAF02az0AAAAAZ9H9PwAAAAA4hU09AAAAAK4a2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlv/k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdBMKvgAAAAA3IQHAAAAAANBv2b0AAAAAGtr0PwAAAAArnsu9AAAAABbW8D8AAAAAAyitvQAAAABJhuq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJA9KPGQ0aMAWyUTegDjAF0lEdArx2Owu/UOXV9lChoBkdAjo2+umrKeWgHTegDaAhHQK8fUMR6F/R1fZQoaAZHQIa+tHavicZoB03oA2gIR0CvH4C+10DEdX2UKGgGR0CQhfS00FbFaAdN6ANoCEdAryCZP9DQaHV9lChoBkdAhiQiMglniGgHTegDaAhHQK8rT8iwB5p1fZQoaAZHQJKsGB3A2ydoB03oA2gIR0CvLQVzhgmadX2UKGgGR0COw+QmNR3vaAdN6ANoCEdAry1CvX9R8HV9lChoBkdAhM6dqcmShmgHTegDaAhHQK8u59tMwlB1fZQoaAZHQJHKx8/lhgFoB03oA2gIR0CvPXdkJ8fFdX2UKGgGR0CRePwob4rSaAdN6ANoCEdArz8rM5fdAXV9lChoBkdAj8uxXXAdn2gHTegDaAhHQK8/WMKCxu91fZQoaAZHQIwK/zJ6po9oB03oA2gIR0CvQG7IcR16dX2UKGgGR0CL0zxDst03aAdN6ANoCEdAr0sH6hxo7HV9lChoBkdAkCL++/QBxWgHTegDaAhHQK9Mrb0voNd1fZQoaAZHQJCAj0th/iJoB03oA2gIR0CvTN5G8VYZdX2UKGgGR0CJpb2KVII4aAdN6ANoCEdAr05Q8hcJMXV9lChoBkdAjbV6Gxlg+mgHTegDaAhHQK9gWwh4dIZ1fZQoaAZHQI4ba8cuJ1toB03oA2gIR0CvY0xCIDYAdX2UKGgGR0CRLmsqJ/G3aAdN6ANoCEdAr2OZVhkRSXV9lChoBkdAiqwMAFPi1mgHTegDaAhHQK9k8+8oQWh1fZQoaAZHQIoQEkrwvxpoB03oA2gIR0Cvb6DVYp2EdX2UKGgGR0COcmQxvegtaAdN6ANoCEdAr3FYOc2BKHV9lChoBkdAjRzKrR0EHWgHTegDaAhHQK9xiIZ62OR1fZQoaAZHQJBPzd8Aq/doB03oA2gIR0CvcqNyYG+sdX2UKGgGR0CSVw5U96kZaAdN6ANoCEdAr4Cmpn6EanV9lChoBkdAkcXEUKzAvmgHTegDaAhHQK+DfZOi35N1fZQoaAZHQJGQhz6rNnpoB03oA2gIR0Cvg7jVQQ+VdX2UKGgGR0CRPhX3QD3eaAdN6ANoCEdAr4S+2VmjCnV9lChoBkdAit8BTOxB3WgHTegDaAhHQK+POAkLQX11fZQoaAZHQJGOst8NQTFoB03oA2gIR0CvkPPMbFS9dX2UKGgGR0COPyvIwM6SaAdN6ANoCEdAr5Eh/5LytnV9lChoBkdAjcDpFLFn7GgHTegDaAhHQK+SMcFyJbd1fZQoaAZHQI1/i4J/oaFoB03oA2gIR0Cvn750CA+ZdX2UKGgGR0CRXflaKUFCaAdN6ANoCEdAr6J+PV/c33V9lChoBkdAk3tTVx0dR2gHTegDaAhHQK+iy/+Kjzt1fZQoaAZHQJEAbZzxPO9oB03oA2gIR0CvpE/e1rqMdX2UKGgGR0CTHi5imVJMaAdN6ANoCEdAr67+AEt/WnV9lChoBkdAknpCtvGZNWgHTegDaAhHQK+wqJJoTPB1fZQoaAZHQJLN1bOeJ55oB03oA2gIR0CvsNVOsT37dX2UKGgGR0CRcfvHtF8YaAdN6ANoCEdAr7HZ5xBE8nV9lChoBkdAkb1gEQoTf2gHTegDaAhHQK+/FVLi++N1fZQoaAZHQI+l3xYq5LBoB03oA2gIR0CvwiVrRBu5dX2UKGgGR0CRAc31SOzZaAdN6ANoCEdAr8KbTjNpunV9lChoBkdAkBrnoPkJbGgHTegDaAhHQK/FEkTHsC11fZQoaAZHQJAxfVH4GlhoB03oA2gIR0Cv02IC2c8UdX2UKGgGR0CDJF8gIQe4aAdN6ANoCEdAr9UQ9ovi+HV9lChoBkdAkYa4KUmlZWgHTegDaAhHQK/VPWkrPMV1fZQoaAZHQJEy71pTMq1oB03oA2gIR0Cv1kfCQ9zPdX2UKGgGR0CQkacHGCI2aAdN6ANoCEdAr+U3eN1hcHV9lChoBkdAkIeXCTEBKmgHTegDaAhHQK/nDu0kWyl1fZQoaAZHQI+mh3LV4HJoB03oA2gIR0Cv50C1AqusdX2UKGgGR0CNYoGbkOqeaAdN6ANoCEdAr+hURradtnV9lChoBkdAkITLC79Q42gHTegDaAhHQK/y6CROk+J1fZQoaAZHQJCPwnG8275oB03oA2gIR0Cv9JrIYFaCdX2UKGgGR0CSm+AHVwxWaAdN6ANoCEdAr/TJqoIfKnV9lChoBkdAifGN+b3GoGgHTegDaAhHQK/11Wy1NQF1fZQoaAZHQJIgLrOZ9eBoB03oA2gIR0CwAj7j94u9dX2UKGgGR0CNgsP1+RYBaAdN6ANoCEdAsANfu0CzTnV9lChoBkdAkjyI0Q9RrWgHTegDaAhHQLADd69CeEt1fZQoaAZHQJMrVL127nRoB03oA2gIR0CwA//6sQumdX2UKGgGR0CTdwyz5XU6aAdN6ANoCEdAsAlFwQ176nV9lChoBkdAk4evOhTOxGgHTegDaAhHQLAKE4+bExZ1fZQoaAZHQJEmyAvtdAxoB03oA2gIR0CwCipRGc4HdX2UKGgGR0CQ8s8brC3xaAdN6ANoCEdAsAqquMdcS3V9lChoBkdAkw5hxkupTGgHTegDaAhHQLARmr8zhxZ1fZQoaAZHQJOD/dP+GXZoB03oA2gIR0CwEweQ6p5vdX2UKGgGR0CSEI1uR9w4aAdN6ANoCEdAsBMmFCb+cnV9lChoBkdAkmAydFvyb2gHTegDaAhHQLATqLkCFK11fZQoaAZHQItNIS8J2MdoB03oA2gIR0CwGluj7ALzdX2UKGgGR0CUhDMKkVN6aAdN6ANoCEdAsBu0xnFo+XV9lChoBkdAkhww1BMSK2gHTegDaAhHQLAb2X8wYch1fZQoaAZHQJQbNTHbRF9oB03oA2gIR0CwHIBaLXMAdX2UKGgGR0CT2Oyo4uK5aAdN6ANoCEdAsCQTWhAWznV9lChoBkdAk7N8x0uDjGgHTegDaAhHQLAk78wHqu91fZQoaAZHQJFtw+dK/VRoB03oA2gIR0CwJQaPbO/tdX2UKGgGR0CNBQ2CuloEaAdN6ANoCEdAsCWMVGkN4XV9lChoBkdAkq/QpBomHGgHTegDaAhHQLAq6oAn2Ix1fZQoaAZHQJKAX20zCUJoB03oA2gIR0CwK7zqW1MNdX2UKGgGR0CQ/VjDKoycaAdN6ANoCEdAsCvVf1Hvt3V9lChoBkdAkV7NZRsMzGgHTegDaAhHQLAsXMoMKCx1fZQoaAZHQI7GC7iADq5oB03oA2gIR0CwM/4znA6/dX2UKGgGR0CQMdR/ViF1aAdN6ANoCEdAsDTTjBEa2nV9lChoBkdAkbLO4TbnHWgHTegDaAhHQLA06zvJA+p1fZQoaAZHQI5NmX7cfvFoB03oA2gIR0CwNW8MZxaQdX2UKGgGR0CSmGot+TePaAdN6ANoCEdAsDqsmTkhinV9lChoBkdAkL6vTPSlWWgHTegDaAhHQLA7eWiDdxh1fZQoaAZHQJGew6JZW7xoB03oA2gIR0CwO497a7EpdX2UKGgGR0CRuALKFIuoaAdN6ANoCEdAsDwZGG21D3V9lChoBkdAkl9C/XXiBGgHTegDaAhHQLBDnir1dxB1fZQoaAZHQJHeNOARTS9oB03oA2gIR0CwRG9ZJTVEdX2UKGgGR0CTh9Cp3os7aAdN6ANoCEdAsESGPluFYnV9lChoBkdAkDRl85S3s2gHTegDaAhHQLBFD7Bfrrx1fZQoaAZHQJAsLTCtRvZoB03oA2gIR0CwSlx/EwWWdX2UKGgGR0CViEI+nqFAaAdN6ANoCEdAsEs8W56MSHV9lChoBkdAj8eH0TURWmgHTegDaAhHQLBLYPH1e0J1fZQoaAZHQJBpSFN+LFZoB03oA2gIR0CwTCUcOskqdX2UKGgGR0CW1ajaPCEYaAdN6ANoCEdAsFWnJhfBvnV9lChoBkdAjwrDq4YrKGgHTegDaAhHQLBWkKVII4V1fZQoaAZHQJEBuCHymQ9oB03oA2gIR0CwVqaMrEtNdX2UKGgGR0CR+QrEcbR4aAdN6ANoCEdAsFctlK9PDnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd2270a4fef0333d41b575f626b36fffaeea18a9c137ad399ca093bdfe83c3b3
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:070bac258c7d22077ceafe731fadd5cb860dbaac6eddfaecf39e1b01893f5f0f
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb566784820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5667848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb566784940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5667849d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb566784a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb566784af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb566784b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb566784c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb566784ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb566784d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb566784dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb566784e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb5667860c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678765240003736130, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIEdVD/TXXS/nu7mPgSfxj/RFcs/evMBwFA1HT8Ff56/fK43P2U5MLyIZqY/WHBbQMP2RT8Ic3m/q3czP6n1sjzhkjE/A2xav68s5j7NX20/wPTMvlq1Bj9mNrm+QVBSwA/Nib/jZwk/9jYgP+Pzlr/8vpm/Zn9nPAKkJD+yTtS+h52FviJFkT7bu7Y8hjk1PjSYGT96Wea+7X6pvk6eAD6DfE6+biqIv2mIAz9CVyu+s11rPksuIr81yAk/J++wPSFQI7+Nlqc+IKs2v9cIbrzLym0/42cJP/Y2ID/j85a/c2QlP+Dds79nHHI92mk/P9I1sDzv+Xw/AwCvvk52DL+6ojc/8v0JvK8QRL8Fs5Y9TNm9viAuTT9XRGY+k4WuP8T3bz/abDw/2F3vPgybX79kRBu/K4+5vw9znz8u85G+D82Jv+NnCT+Khsy/GxNZP+2sSr8uyu6/bjw5vyOwDT85ysS+ABG3vxQEHr6QjXe+KsEvP4kAir5Bsrm+XTPcPzatWb/B9Za/rM40P/mh+ryp2zU+1+F5vxuy9D7qPps+mWjtvkH9Rr8F2gW/DqcFwA/Nib/hee6/9jYgP+Pzlr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEPjg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0sIbvQAAAAC0V+i/AAAAAH72hjsAAAAA7c/mPwAAAACC8Rk9AAAAAGbr3z8AAAAAc6BGPQAAAAD2fOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOPCWtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDKQh70AAAAAXBP+vwAAAABMAAC+AAAAAFgu5D8AAAAAx5KMvQAAAABpgN8/AAAAANfAjz0AAAAACbv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMWWibYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJj2c9AAAAAAzx678AAAAAeIQGvgAAAACaEgFAAAAAAF02az0AAAAAZ9H9PwAAAAA4hU09AAAAAK4a2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlv/k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdBMKvgAAAAA3IQHAAAAAANBv2b0AAAAAGtr0PwAAAAArnsu9AAAAABbW8D8AAAAAAyitvQAAAABJhuq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJA9KPGQ0aMAWyUTegDjAF0lEdArx2Owu/UOXV9lChoBkdAjo2+umrKeWgHTegDaAhHQK8fUMR6F/R1fZQoaAZHQIa+tHavicZoB03oA2gIR0CvH4C+10DEdX2UKGgGR0CQhfS00FbFaAdN6ANoCEdAryCZP9DQaHV9lChoBkdAhiQiMglniGgHTegDaAhHQK8rT8iwB5p1fZQoaAZHQJKsGB3A2ydoB03oA2gIR0CvLQVzhgmadX2UKGgGR0COw+QmNR3vaAdN6ANoCEdAry1CvX9R8HV9lChoBkdAhM6dqcmShmgHTegDaAhHQK8u59tMwlB1fZQoaAZHQJHKx8/lhgFoB03oA2gIR0CvPXdkJ8fFdX2UKGgGR0CRePwob4rSaAdN6ANoCEdArz8rM5fdAXV9lChoBkdAj8uxXXAdn2gHTegDaAhHQK8/WMKCxu91fZQoaAZHQIwK/zJ6po9oB03oA2gIR0CvQG7IcR16dX2UKGgGR0CL0zxDst03aAdN6ANoCEdAr0sH6hxo7HV9lChoBkdAkCL++/QBxWgHTegDaAhHQK9Mrb0voNd1fZQoaAZHQJCAj0th/iJoB03oA2gIR0CvTN5G8VYZdX2UKGgGR0CJpb2KVII4aAdN6ANoCEdAr05Q8hcJMXV9lChoBkdAjbV6Gxlg+mgHTegDaAhHQK9gWwh4dIZ1fZQoaAZHQI4ba8cuJ1toB03oA2gIR0CvY0xCIDYAdX2UKGgGR0CRLmsqJ/G3aAdN6ANoCEdAr2OZVhkRSXV9lChoBkdAiqwMAFPi1mgHTegDaAhHQK9k8+8oQWh1fZQoaAZHQIoQEkrwvxpoB03oA2gIR0Cvb6DVYp2EdX2UKGgGR0COcmQxvegtaAdN6ANoCEdAr3FYOc2BKHV9lChoBkdAjRzKrR0EHWgHTegDaAhHQK9xiIZ62OR1fZQoaAZHQJBPzd8Aq/doB03oA2gIR0CvcqNyYG+sdX2UKGgGR0CSVw5U96kZaAdN6ANoCEdAr4Cmpn6EanV9lChoBkdAkcXEUKzAvmgHTegDaAhHQK+DfZOi35N1fZQoaAZHQJGQhz6rNnpoB03oA2gIR0Cvg7jVQQ+VdX2UKGgGR0CRPhX3QD3eaAdN6ANoCEdAr4S+2VmjCnV9lChoBkdAit8BTOxB3WgHTegDaAhHQK+POAkLQX11fZQoaAZHQJGOst8NQTFoB03oA2gIR0CvkPPMbFS9dX2UKGgGR0COPyvIwM6SaAdN6ANoCEdAr5Eh/5LytnV9lChoBkdAjcDpFLFn7GgHTegDaAhHQK+SMcFyJbd1fZQoaAZHQI1/i4J/oaFoB03oA2gIR0Cvn750CA+ZdX2UKGgGR0CRXflaKUFCaAdN6ANoCEdAr6J+PV/c33V9lChoBkdAk3tTVx0dR2gHTegDaAhHQK+iy/+Kjzt1fZQoaAZHQJEAbZzxPO9oB03oA2gIR0CvpE/e1rqMdX2UKGgGR0CTHi5imVJMaAdN6ANoCEdAr67+AEt/WnV9lChoBkdAknpCtvGZNWgHTegDaAhHQK+wqJJoTPB1fZQoaAZHQJLN1bOeJ55oB03oA2gIR0CvsNVOsT37dX2UKGgGR0CRcfvHtF8YaAdN6ANoCEdAr7HZ5xBE8nV9lChoBkdAkb1gEQoTf2gHTegDaAhHQK+/FVLi++N1fZQoaAZHQI+l3xYq5LBoB03oA2gIR0CvwiVrRBu5dX2UKGgGR0CRAc31SOzZaAdN6ANoCEdAr8KbTjNpunV9lChoBkdAkBrnoPkJbGgHTegDaAhHQK/FEkTHsC11fZQoaAZHQJAxfVH4GlhoB03oA2gIR0Cv02IC2c8UdX2UKGgGR0CDJF8gIQe4aAdN6ANoCEdAr9UQ9ovi+HV9lChoBkdAkYa4KUmlZWgHTegDaAhHQK/VPWkrPMV1fZQoaAZHQJEy71pTMq1oB03oA2gIR0Cv1kfCQ9zPdX2UKGgGR0CQkacHGCI2aAdN6ANoCEdAr+U3eN1hcHV9lChoBkdAkIeXCTEBKmgHTegDaAhHQK/nDu0kWyl1fZQoaAZHQI+mh3LV4HJoB03oA2gIR0Cv50C1AqusdX2UKGgGR0CNYoGbkOqeaAdN6ANoCEdAr+hURradtnV9lChoBkdAkITLC79Q42gHTegDaAhHQK/y6CROk+J1fZQoaAZHQJCPwnG8275oB03oA2gIR0Cv9JrIYFaCdX2UKGgGR0CSm+AHVwxWaAdN6ANoCEdAr/TJqoIfKnV9lChoBkdAifGN+b3GoGgHTegDaAhHQK/11Wy1NQF1fZQoaAZHQJIgLrOZ9eBoB03oA2gIR0CwAj7j94u9dX2UKGgGR0CNgsP1+RYBaAdN6ANoCEdAsANfu0CzTnV9lChoBkdAkjyI0Q9RrWgHTegDaAhHQLADd69CeEt1fZQoaAZHQJMrVL127nRoB03oA2gIR0CwA//6sQumdX2UKGgGR0CTdwyz5XU6aAdN6ANoCEdAsAlFwQ176nV9lChoBkdAk4evOhTOxGgHTegDaAhHQLAKE4+bExZ1fZQoaAZHQJEmyAvtdAxoB03oA2gIR0CwCipRGc4HdX2UKGgGR0CQ8s8brC3xaAdN6ANoCEdAsAqquMdcS3V9lChoBkdAkw5hxkupTGgHTegDaAhHQLARmr8zhxZ1fZQoaAZHQJOD/dP+GXZoB03oA2gIR0CwEweQ6p5vdX2UKGgGR0CSEI1uR9w4aAdN6ANoCEdAsBMmFCb+cnV9lChoBkdAkmAydFvyb2gHTegDaAhHQLATqLkCFK11fZQoaAZHQItNIS8J2MdoB03oA2gIR0CwGluj7ALzdX2UKGgGR0CUhDMKkVN6aAdN6ANoCEdAsBu0xnFo+XV9lChoBkdAkhww1BMSK2gHTegDaAhHQLAb2X8wYch1fZQoaAZHQJQbNTHbRF9oB03oA2gIR0CwHIBaLXMAdX2UKGgGR0CT2Oyo4uK5aAdN6ANoCEdAsCQTWhAWznV9lChoBkdAk7N8x0uDjGgHTegDaAhHQLAk78wHqu91fZQoaAZHQJFtw+dK/VRoB03oA2gIR0CwJQaPbO/tdX2UKGgGR0CNBQ2CuloEaAdN6ANoCEdAsCWMVGkN4XV9lChoBkdAkq/QpBomHGgHTegDaAhHQLAq6oAn2Ix1fZQoaAZHQJKAX20zCUJoB03oA2gIR0CwK7zqW1MNdX2UKGgGR0CQ/VjDKoycaAdN6ANoCEdAsCvVf1Hvt3V9lChoBkdAkV7NZRsMzGgHTegDaAhHQLAsXMoMKCx1fZQoaAZHQI7GC7iADq5oB03oA2gIR0CwM/4znA6/dX2UKGgGR0CQMdR/ViF1aAdN6ANoCEdAsDTTjBEa2nV9lChoBkdAkbLO4TbnHWgHTegDaAhHQLA06zvJA+p1fZQoaAZHQI5NmX7cfvFoB03oA2gIR0CwNW8MZxaQdX2UKGgGR0CSmGot+TePaAdN6ANoCEdAsDqsmTkhinV9lChoBkdAkL6vTPSlWWgHTegDaAhHQLA7eWiDdxh1fZQoaAZHQJGew6JZW7xoB03oA2gIR0CwO497a7EpdX2UKGgGR0CRuALKFIuoaAdN6ANoCEdAsDwZGG21D3V9lChoBkdAkl9C/XXiBGgHTegDaAhHQLBDnir1dxB1fZQoaAZHQJHeNOARTS9oB03oA2gIR0CwRG9ZJTVEdX2UKGgGR0CTh9Cp3os7aAdN6ANoCEdAsESGPluFYnV9lChoBkdAkDRl85S3s2gHTegDaAhHQLBFD7Bfrrx1fZQoaAZHQJAsLTCtRvZoB03oA2gIR0CwSlx/EwWWdX2UKGgGR0CViEI+nqFAaAdN6ANoCEdAsEs8W56MSHV9lChoBkdAj8eH0TURWmgHTegDaAhHQLBLYPH1e0J1fZQoaAZHQJBpSFN+LFZoB03oA2gIR0CwTCUcOskqdX2UKGgGR0CW1ajaPCEYaAdN6ANoCEdAsFWnJhfBvnV9lChoBkdAjwrDq4YrKGgHTegDaAhHQLBWkKVII4V1fZQoaAZHQJEBuCHymQ9oB03oA2gIR0CwVqaMrEtNdX2UKGgGR0CR+QrEcbR4aAdN6ANoCEdAsFctlK9PDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3cb686f245456ab0810fa2af128ad4df7eee3c1b0bb9fcf8bde546b3bd45daf
3
+ size 1007488
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1111.7185134426138, "std_reward": 175.62666472264823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T04:51:29.626690"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:436ca7f4a8160fc8a6aa680bf559f167931386aa0fc8935b67d4c343d8f651b2
3
+ size 2136