juansebashr
commited on
Commit
·
9ea3581
1
Parent(s):
1022209
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1111.72 +/- 175.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a21856dfff28305e1d599ccc29817d26ef394afc9c7876e8666461f070aa92f2
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb566784820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5667848b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb566784940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5667849d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb566784a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb566784af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb566784b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb566784c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb566784ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb566784d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb566784dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb566784e50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb5667860c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678765240003736130,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIEdVD/TXXS/nu7mPgSfxj/RFcs/evMBwFA1HT8Ff56/fK43P2U5MLyIZqY/WHBbQMP2RT8Ic3m/q3czP6n1sjzhkjE/A2xav68s5j7NX20/wPTMvlq1Bj9mNrm+QVBSwA/Nib/jZwk/9jYgP+Pzlr/8vpm/Zn9nPAKkJD+yTtS+h52FviJFkT7bu7Y8hjk1PjSYGT96Wea+7X6pvk6eAD6DfE6+biqIv2mIAz9CVyu+s11rPksuIr81yAk/J++wPSFQI7+Nlqc+IKs2v9cIbrzLym0/42cJP/Y2ID/j85a/c2QlP+Dds79nHHI92mk/P9I1sDzv+Xw/AwCvvk52DL+6ojc/8v0JvK8QRL8Fs5Y9TNm9viAuTT9XRGY+k4WuP8T3bz/abDw/2F3vPgybX79kRBu/K4+5vw9znz8u85G+D82Jv+NnCT+Khsy/GxNZP+2sSr8uyu6/bjw5vyOwDT85ysS+ABG3vxQEHr6QjXe+KsEvP4kAir5Bsrm+XTPcPzatWb/B9Za/rM40P/mh+ryp2zU+1+F5vxuy9D7qPps+mWjtvkH9Rr8F2gW/DqcFwA/Nib/hee6/9jYgP+Pzlr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEPjg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0sIbvQAAAAC0V+i/AAAAAH72hjsAAAAA7c/mPwAAAACC8Rk9AAAAAGbr3z8AAAAAc6BGPQAAAAD2fOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOPCWtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDKQh70AAAAAXBP+vwAAAABMAAC+AAAAAFgu5D8AAAAAx5KMvQAAAABpgN8/AAAAANfAjz0AAAAACbv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMWWibYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJj2c9AAAAAAzx678AAAAAeIQGvgAAAACaEgFAAAAAAF02az0AAAAAZ9H9PwAAAAA4hU09AAAAAK4a2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlv/k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdBMKvgAAAAA3IQHAAAAAANBv2b0AAAAAGtr0PwAAAAArnsu9AAAAABbW8D8AAAAAAyitvQAAAABJhuq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJA9KPGQ0aMAWyUTegDjAF0lEdArx2Owu/UOXV9lChoBkdAjo2+umrKeWgHTegDaAhHQK8fUMR6F/R1fZQoaAZHQIa+tHavicZoB03oA2gIR0CvH4C+10DEdX2UKGgGR0CQhfS00FbFaAdN6ANoCEdAryCZP9DQaHV9lChoBkdAhiQiMglniGgHTegDaAhHQK8rT8iwB5p1fZQoaAZHQJKsGB3A2ydoB03oA2gIR0CvLQVzhgmadX2UKGgGR0COw+QmNR3vaAdN6ANoCEdAry1CvX9R8HV9lChoBkdAhM6dqcmShmgHTegDaAhHQK8u59tMwlB1fZQoaAZHQJHKx8/lhgFoB03oA2gIR0CvPXdkJ8fFdX2UKGgGR0CRePwob4rSaAdN6ANoCEdArz8rM5fdAXV9lChoBkdAj8uxXXAdn2gHTegDaAhHQK8/WMKCxu91fZQoaAZHQIwK/zJ6po9oB03oA2gIR0CvQG7IcR16dX2UKGgGR0CL0zxDst03aAdN6ANoCEdAr0sH6hxo7HV9lChoBkdAkCL++/QBxWgHTegDaAhHQK9Mrb0voNd1fZQoaAZHQJCAj0th/iJoB03oA2gIR0CvTN5G8VYZdX2UKGgGR0CJpb2KVII4aAdN6ANoCEdAr05Q8hcJMXV9lChoBkdAjbV6Gxlg+mgHTegDaAhHQK9gWwh4dIZ1fZQoaAZHQI4ba8cuJ1toB03oA2gIR0CvY0xCIDYAdX2UKGgGR0CRLmsqJ/G3aAdN6ANoCEdAr2OZVhkRSXV9lChoBkdAiqwMAFPi1mgHTegDaAhHQK9k8+8oQWh1fZQoaAZHQIoQEkrwvxpoB03oA2gIR0Cvb6DVYp2EdX2UKGgGR0COcmQxvegtaAdN6ANoCEdAr3FYOc2BKHV9lChoBkdAjRzKrR0EHWgHTegDaAhHQK9xiIZ62OR1fZQoaAZHQJBPzd8Aq/doB03oA2gIR0CvcqNyYG+sdX2UKGgGR0CSVw5U96kZaAdN6ANoCEdAr4Cmpn6EanV9lChoBkdAkcXEUKzAvmgHTegDaAhHQK+DfZOi35N1fZQoaAZHQJGQhz6rNnpoB03oA2gIR0Cvg7jVQQ+VdX2UKGgGR0CRPhX3QD3eaAdN6ANoCEdAr4S+2VmjCnV9lChoBkdAit8BTOxB3WgHTegDaAhHQK+POAkLQX11fZQoaAZHQJGOst8NQTFoB03oA2gIR0CvkPPMbFS9dX2UKGgGR0COPyvIwM6SaAdN6ANoCEdAr5Eh/5LytnV9lChoBkdAjcDpFLFn7GgHTegDaAhHQK+SMcFyJbd1fZQoaAZHQI1/i4J/oaFoB03oA2gIR0Cvn750CA+ZdX2UKGgGR0CRXflaKUFCaAdN6ANoCEdAr6J+PV/c33V9lChoBkdAk3tTVx0dR2gHTegDaAhHQK+iy/+Kjzt1fZQoaAZHQJEAbZzxPO9oB03oA2gIR0CvpE/e1rqMdX2UKGgGR0CTHi5imVJMaAdN6ANoCEdAr67+AEt/WnV9lChoBkdAknpCtvGZNWgHTegDaAhHQK+wqJJoTPB1fZQoaAZHQJLN1bOeJ55oB03oA2gIR0CvsNVOsT37dX2UKGgGR0CRcfvHtF8YaAdN6ANoCEdAr7HZ5xBE8nV9lChoBkdAkb1gEQoTf2gHTegDaAhHQK+/FVLi++N1fZQoaAZHQI+l3xYq5LBoB03oA2gIR0CvwiVrRBu5dX2UKGgGR0CRAc31SOzZaAdN6ANoCEdAr8KbTjNpunV9lChoBkdAkBrnoPkJbGgHTegDaAhHQK/FEkTHsC11fZQoaAZHQJAxfVH4GlhoB03oA2gIR0Cv02IC2c8UdX2UKGgGR0CDJF8gIQe4aAdN6ANoCEdAr9UQ9ovi+HV9lChoBkdAkYa4KUmlZWgHTegDaAhHQK/VPWkrPMV1fZQoaAZHQJEy71pTMq1oB03oA2gIR0Cv1kfCQ9zPdX2UKGgGR0CQkacHGCI2aAdN6ANoCEdAr+U3eN1hcHV9lChoBkdAkIeXCTEBKmgHTegDaAhHQK/nDu0kWyl1fZQoaAZHQI+mh3LV4HJoB03oA2gIR0Cv50C1AqusdX2UKGgGR0CNYoGbkOqeaAdN6ANoCEdAr+hURradtnV9lChoBkdAkITLC79Q42gHTegDaAhHQK/y6CROk+J1fZQoaAZHQJCPwnG8275oB03oA2gIR0Cv9JrIYFaCdX2UKGgGR0CSm+AHVwxWaAdN6ANoCEdAr/TJqoIfKnV9lChoBkdAifGN+b3GoGgHTegDaAhHQK/11Wy1NQF1fZQoaAZHQJIgLrOZ9eBoB03oA2gIR0CwAj7j94u9dX2UKGgGR0CNgsP1+RYBaAdN6ANoCEdAsANfu0CzTnV9lChoBkdAkjyI0Q9RrWgHTegDaAhHQLADd69CeEt1fZQoaAZHQJMrVL127nRoB03oA2gIR0CwA//6sQumdX2UKGgGR0CTdwyz5XU6aAdN6ANoCEdAsAlFwQ176nV9lChoBkdAk4evOhTOxGgHTegDaAhHQLAKE4+bExZ1fZQoaAZHQJEmyAvtdAxoB03oA2gIR0CwCipRGc4HdX2UKGgGR0CQ8s8brC3xaAdN6ANoCEdAsAqquMdcS3V9lChoBkdAkw5hxkupTGgHTegDaAhHQLARmr8zhxZ1fZQoaAZHQJOD/dP+GXZoB03oA2gIR0CwEweQ6p5vdX2UKGgGR0CSEI1uR9w4aAdN6ANoCEdAsBMmFCb+cnV9lChoBkdAkmAydFvyb2gHTegDaAhHQLATqLkCFK11fZQoaAZHQItNIS8J2MdoB03oA2gIR0CwGluj7ALzdX2UKGgGR0CUhDMKkVN6aAdN6ANoCEdAsBu0xnFo+XV9lChoBkdAkhww1BMSK2gHTegDaAhHQLAb2X8wYch1fZQoaAZHQJQbNTHbRF9oB03oA2gIR0CwHIBaLXMAdX2UKGgGR0CT2Oyo4uK5aAdN6ANoCEdAsCQTWhAWznV9lChoBkdAk7N8x0uDjGgHTegDaAhHQLAk78wHqu91fZQoaAZHQJFtw+dK/VRoB03oA2gIR0CwJQaPbO/tdX2UKGgGR0CNBQ2CuloEaAdN6ANoCEdAsCWMVGkN4XV9lChoBkdAkq/QpBomHGgHTegDaAhHQLAq6oAn2Ix1fZQoaAZHQJKAX20zCUJoB03oA2gIR0CwK7zqW1MNdX2UKGgGR0CQ/VjDKoycaAdN6ANoCEdAsCvVf1Hvt3V9lChoBkdAkV7NZRsMzGgHTegDaAhHQLAsXMoMKCx1fZQoaAZHQI7GC7iADq5oB03oA2gIR0CwM/4znA6/dX2UKGgGR0CQMdR/ViF1aAdN6ANoCEdAsDTTjBEa2nV9lChoBkdAkbLO4TbnHWgHTegDaAhHQLA06zvJA+p1fZQoaAZHQI5NmX7cfvFoB03oA2gIR0CwNW8MZxaQdX2UKGgGR0CSmGot+TePaAdN6ANoCEdAsDqsmTkhinV9lChoBkdAkL6vTPSlWWgHTegDaAhHQLA7eWiDdxh1fZQoaAZHQJGew6JZW7xoB03oA2gIR0CwO497a7EpdX2UKGgGR0CRuALKFIuoaAdN6ANoCEdAsDwZGG21D3V9lChoBkdAkl9C/XXiBGgHTegDaAhHQLBDnir1dxB1fZQoaAZHQJHeNOARTS9oB03oA2gIR0CwRG9ZJTVEdX2UKGgGR0CTh9Cp3os7aAdN6ANoCEdAsESGPluFYnV9lChoBkdAkDRl85S3s2gHTegDaAhHQLBFD7Bfrrx1fZQoaAZHQJAsLTCtRvZoB03oA2gIR0CwSlx/EwWWdX2UKGgGR0CViEI+nqFAaAdN6ANoCEdAsEs8W56MSHV9lChoBkdAj8eH0TURWmgHTegDaAhHQLBLYPH1e0J1fZQoaAZHQJBpSFN+LFZoB03oA2gIR0CwTCUcOskqdX2UKGgGR0CW1ajaPCEYaAdN6ANoCEdAsFWnJhfBvnV9lChoBkdAjwrDq4YrKGgHTegDaAhHQLBWkKVII4V1fZQoaAZHQJEBuCHymQ9oB03oA2gIR0CwVqaMrEtNdX2UKGgGR0CR+QrEcbR4aAdN6ANoCEdAsFctlK9PDnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd2270a4fef0333d41b575f626b36fffaeea18a9c137ad399ca093bdfe83c3b3
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:070bac258c7d22077ceafe731fadd5cb860dbaac6eddfaecf39e1b01893f5f0f
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb566784820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5667848b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb566784940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5667849d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb566784a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb566784af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb566784b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb566784c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb566784ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb566784d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb566784dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb566784e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb5667860c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678765240003736130, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIEdVD/TXXS/nu7mPgSfxj/RFcs/evMBwFA1HT8Ff56/fK43P2U5MLyIZqY/WHBbQMP2RT8Ic3m/q3czP6n1sjzhkjE/A2xav68s5j7NX20/wPTMvlq1Bj9mNrm+QVBSwA/Nib/jZwk/9jYgP+Pzlr/8vpm/Zn9nPAKkJD+yTtS+h52FviJFkT7bu7Y8hjk1PjSYGT96Wea+7X6pvk6eAD6DfE6+biqIv2mIAz9CVyu+s11rPksuIr81yAk/J++wPSFQI7+Nlqc+IKs2v9cIbrzLym0/42cJP/Y2ID/j85a/c2QlP+Dds79nHHI92mk/P9I1sDzv+Xw/AwCvvk52DL+6ojc/8v0JvK8QRL8Fs5Y9TNm9viAuTT9XRGY+k4WuP8T3bz/abDw/2F3vPgybX79kRBu/K4+5vw9znz8u85G+D82Jv+NnCT+Khsy/GxNZP+2sSr8uyu6/bjw5vyOwDT85ysS+ABG3vxQEHr6QjXe+KsEvP4kAir5Bsrm+XTPcPzatWb/B9Za/rM40P/mh+ryp2zU+1+F5vxuy9D7qPps+mWjtvkH9Rr8F2gW/DqcFwA/Nib/hee6/9jYgP+Pzlr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEPjg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0sIbvQAAAAC0V+i/AAAAAH72hjsAAAAA7c/mPwAAAACC8Rk9AAAAAGbr3z8AAAAAc6BGPQAAAAD2fOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOPCWtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDKQh70AAAAAXBP+vwAAAABMAAC+AAAAAFgu5D8AAAAAx5KMvQAAAABpgN8/AAAAANfAjz0AAAAACbv0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMWWibYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJj2c9AAAAAAzx678AAAAAeIQGvgAAAACaEgFAAAAAAF02az0AAAAAZ9H9PwAAAAA4hU09AAAAAK4a2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlv/k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdBMKvgAAAAA3IQHAAAAAANBv2b0AAAAAGtr0PwAAAAArnsu9AAAAABbW8D8AAAAAAyitvQAAAABJhuq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJA9KPGQ0aMAWyUTegDjAF0lEdArx2Owu/UOXV9lChoBkdAjo2+umrKeWgHTegDaAhHQK8fUMR6F/R1fZQoaAZHQIa+tHavicZoB03oA2gIR0CvH4C+10DEdX2UKGgGR0CQhfS00FbFaAdN6ANoCEdAryCZP9DQaHV9lChoBkdAhiQiMglniGgHTegDaAhHQK8rT8iwB5p1fZQoaAZHQJKsGB3A2ydoB03oA2gIR0CvLQVzhgmadX2UKGgGR0COw+QmNR3vaAdN6ANoCEdAry1CvX9R8HV9lChoBkdAhM6dqcmShmgHTegDaAhHQK8u59tMwlB1fZQoaAZHQJHKx8/lhgFoB03oA2gIR0CvPXdkJ8fFdX2UKGgGR0CRePwob4rSaAdN6ANoCEdArz8rM5fdAXV9lChoBkdAj8uxXXAdn2gHTegDaAhHQK8/WMKCxu91fZQoaAZHQIwK/zJ6po9oB03oA2gIR0CvQG7IcR16dX2UKGgGR0CL0zxDst03aAdN6ANoCEdAr0sH6hxo7HV9lChoBkdAkCL++/QBxWgHTegDaAhHQK9Mrb0voNd1fZQoaAZHQJCAj0th/iJoB03oA2gIR0CvTN5G8VYZdX2UKGgGR0CJpb2KVII4aAdN6ANoCEdAr05Q8hcJMXV9lChoBkdAjbV6Gxlg+mgHTegDaAhHQK9gWwh4dIZ1fZQoaAZHQI4ba8cuJ1toB03oA2gIR0CvY0xCIDYAdX2UKGgGR0CRLmsqJ/G3aAdN6ANoCEdAr2OZVhkRSXV9lChoBkdAiqwMAFPi1mgHTegDaAhHQK9k8+8oQWh1fZQoaAZHQIoQEkrwvxpoB03oA2gIR0Cvb6DVYp2EdX2UKGgGR0COcmQxvegtaAdN6ANoCEdAr3FYOc2BKHV9lChoBkdAjRzKrR0EHWgHTegDaAhHQK9xiIZ62OR1fZQoaAZHQJBPzd8Aq/doB03oA2gIR0CvcqNyYG+sdX2UKGgGR0CSVw5U96kZaAdN6ANoCEdAr4Cmpn6EanV9lChoBkdAkcXEUKzAvmgHTegDaAhHQK+DfZOi35N1fZQoaAZHQJGQhz6rNnpoB03oA2gIR0Cvg7jVQQ+VdX2UKGgGR0CRPhX3QD3eaAdN6ANoCEdAr4S+2VmjCnV9lChoBkdAit8BTOxB3WgHTegDaAhHQK+POAkLQX11fZQoaAZHQJGOst8NQTFoB03oA2gIR0CvkPPMbFS9dX2UKGgGR0COPyvIwM6SaAdN6ANoCEdAr5Eh/5LytnV9lChoBkdAjcDpFLFn7GgHTegDaAhHQK+SMcFyJbd1fZQoaAZHQI1/i4J/oaFoB03oA2gIR0Cvn750CA+ZdX2UKGgGR0CRXflaKUFCaAdN6ANoCEdAr6J+PV/c33V9lChoBkdAk3tTVx0dR2gHTegDaAhHQK+iy/+Kjzt1fZQoaAZHQJEAbZzxPO9oB03oA2gIR0CvpE/e1rqMdX2UKGgGR0CTHi5imVJMaAdN6ANoCEdAr67+AEt/WnV9lChoBkdAknpCtvGZNWgHTegDaAhHQK+wqJJoTPB1fZQoaAZHQJLN1bOeJ55oB03oA2gIR0CvsNVOsT37dX2UKGgGR0CRcfvHtF8YaAdN6ANoCEdAr7HZ5xBE8nV9lChoBkdAkb1gEQoTf2gHTegDaAhHQK+/FVLi++N1fZQoaAZHQI+l3xYq5LBoB03oA2gIR0CvwiVrRBu5dX2UKGgGR0CRAc31SOzZaAdN6ANoCEdAr8KbTjNpunV9lChoBkdAkBrnoPkJbGgHTegDaAhHQK/FEkTHsC11fZQoaAZHQJAxfVH4GlhoB03oA2gIR0Cv02IC2c8UdX2UKGgGR0CDJF8gIQe4aAdN6ANoCEdAr9UQ9ovi+HV9lChoBkdAkYa4KUmlZWgHTegDaAhHQK/VPWkrPMV1fZQoaAZHQJEy71pTMq1oB03oA2gIR0Cv1kfCQ9zPdX2UKGgGR0CQkacHGCI2aAdN6ANoCEdAr+U3eN1hcHV9lChoBkdAkIeXCTEBKmgHTegDaAhHQK/nDu0kWyl1fZQoaAZHQI+mh3LV4HJoB03oA2gIR0Cv50C1AqusdX2UKGgGR0CNYoGbkOqeaAdN6ANoCEdAr+hURradtnV9lChoBkdAkITLC79Q42gHTegDaAhHQK/y6CROk+J1fZQoaAZHQJCPwnG8275oB03oA2gIR0Cv9JrIYFaCdX2UKGgGR0CSm+AHVwxWaAdN6ANoCEdAr/TJqoIfKnV9lChoBkdAifGN+b3GoGgHTegDaAhHQK/11Wy1NQF1fZQoaAZHQJIgLrOZ9eBoB03oA2gIR0CwAj7j94u9dX2UKGgGR0CNgsP1+RYBaAdN6ANoCEdAsANfu0CzTnV9lChoBkdAkjyI0Q9RrWgHTegDaAhHQLADd69CeEt1fZQoaAZHQJMrVL127nRoB03oA2gIR0CwA//6sQumdX2UKGgGR0CTdwyz5XU6aAdN6ANoCEdAsAlFwQ176nV9lChoBkdAk4evOhTOxGgHTegDaAhHQLAKE4+bExZ1fZQoaAZHQJEmyAvtdAxoB03oA2gIR0CwCipRGc4HdX2UKGgGR0CQ8s8brC3xaAdN6ANoCEdAsAqquMdcS3V9lChoBkdAkw5hxkupTGgHTegDaAhHQLARmr8zhxZ1fZQoaAZHQJOD/dP+GXZoB03oA2gIR0CwEweQ6p5vdX2UKGgGR0CSEI1uR9w4aAdN6ANoCEdAsBMmFCb+cnV9lChoBkdAkmAydFvyb2gHTegDaAhHQLATqLkCFK11fZQoaAZHQItNIS8J2MdoB03oA2gIR0CwGluj7ALzdX2UKGgGR0CUhDMKkVN6aAdN6ANoCEdAsBu0xnFo+XV9lChoBkdAkhww1BMSK2gHTegDaAhHQLAb2X8wYch1fZQoaAZHQJQbNTHbRF9oB03oA2gIR0CwHIBaLXMAdX2UKGgGR0CT2Oyo4uK5aAdN6ANoCEdAsCQTWhAWznV9lChoBkdAk7N8x0uDjGgHTegDaAhHQLAk78wHqu91fZQoaAZHQJFtw+dK/VRoB03oA2gIR0CwJQaPbO/tdX2UKGgGR0CNBQ2CuloEaAdN6ANoCEdAsCWMVGkN4XV9lChoBkdAkq/QpBomHGgHTegDaAhHQLAq6oAn2Ix1fZQoaAZHQJKAX20zCUJoB03oA2gIR0CwK7zqW1MNdX2UKGgGR0CQ/VjDKoycaAdN6ANoCEdAsCvVf1Hvt3V9lChoBkdAkV7NZRsMzGgHTegDaAhHQLAsXMoMKCx1fZQoaAZHQI7GC7iADq5oB03oA2gIR0CwM/4znA6/dX2UKGgGR0CQMdR/ViF1aAdN6ANoCEdAsDTTjBEa2nV9lChoBkdAkbLO4TbnHWgHTegDaAhHQLA06zvJA+p1fZQoaAZHQI5NmX7cfvFoB03oA2gIR0CwNW8MZxaQdX2UKGgGR0CSmGot+TePaAdN6ANoCEdAsDqsmTkhinV9lChoBkdAkL6vTPSlWWgHTegDaAhHQLA7eWiDdxh1fZQoaAZHQJGew6JZW7xoB03oA2gIR0CwO497a7EpdX2UKGgGR0CRuALKFIuoaAdN6ANoCEdAsDwZGG21D3V9lChoBkdAkl9C/XXiBGgHTegDaAhHQLBDnir1dxB1fZQoaAZHQJHeNOARTS9oB03oA2gIR0CwRG9ZJTVEdX2UKGgGR0CTh9Cp3os7aAdN6ANoCEdAsESGPluFYnV9lChoBkdAkDRl85S3s2gHTegDaAhHQLBFD7Bfrrx1fZQoaAZHQJAsLTCtRvZoB03oA2gIR0CwSlx/EwWWdX2UKGgGR0CViEI+nqFAaAdN6ANoCEdAsEs8W56MSHV9lChoBkdAj8eH0TURWmgHTegDaAhHQLBLYPH1e0J1fZQoaAZHQJBpSFN+LFZoB03oA2gIR0CwTCUcOskqdX2UKGgGR0CW1ajaPCEYaAdN6ANoCEdAsFWnJhfBvnV9lChoBkdAjwrDq4YrKGgHTegDaAhHQLBWkKVII4V1fZQoaAZHQJEBuCHymQ9oB03oA2gIR0CwVqaMrEtNdX2UKGgGR0CR+QrEcbR4aAdN6ANoCEdAsFctlK9PDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3cb686f245456ab0810fa2af128ad4df7eee3c1b0bb9fcf8bde546b3bd45daf
|
3 |
+
size 1007488
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1111.7185134426138, "std_reward": 175.62666472264823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T04:51:29.626690"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:436ca7f4a8160fc8a6aa680bf559f167931386aa0fc8935b67d4c343d8f651b2
|
3 |
+
size 2136
|