|
import os |
|
from diffusers import FluxPipeline, AutoencoderKL, FluxTransformer2DModel |
|
from diffusers.image_processor import VaeImageProcessor |
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel, CLIPTextConfig, T5Config |
|
import torch |
|
import gc |
|
from PIL.Image import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight |
|
from time import perf_counter |
|
|
|
|
|
HOME = os.environ["HOME"] |
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" |
|
FLUX_CHECKPOINT = "black-forest-labs/FLUX.1-schnell" |
|
|
|
QUANTIZED_MODEL = ["transformer", "text_encoder_2", "text_encoder", "vae"] |
|
|
|
|
|
QUANT_CONFIG = int8_weight_only() |
|
DTYPE = torch.bfloat16 |
|
NUM_STEPS = 4 |
|
|
|
def get_transformer(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None): |
|
if quant_ckpt is not None: |
|
config = FluxTransformer2DModel.load_config(FLUX_CHECKPOINT, subfolder="transformer") |
|
model = FluxTransformer2DModel.from_config(config).to(DTYPE) |
|
state_dict = torch.load(quant_ckpt, map_location="cpu") |
|
model.load_state_dict(state_dict, assign=True) |
|
print(f"Loaded {quant_ckpt}") |
|
return model |
|
|
|
model = FluxTransformer2DModel.from_pretrained( |
|
FLUX_CHECKPOINT, subfolder="transformer", torch_dtype=DTYPE |
|
) |
|
if quantize: |
|
quantize_(model, quant_config) |
|
return model |
|
|
|
|
|
def get_text_encoder(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None): |
|
if quant_ckpt is not None: |
|
config = CLIPTextConfig.from_pretrained(FLUX_CHECKPOINT, subfolder="text_encoder") |
|
model = CLIPTextModel(config).to(DTYPE) |
|
state_dict = torch.load(quant_ckpt, map_location="cpu") |
|
model.load_state_dict(state_dict, assign=True) |
|
print(f"Loaded {quant_ckpt}") |
|
return model |
|
|
|
model = CLIPTextModel.from_pretrained( |
|
FLUX_CHECKPOINT, subfolder="text_encoder", torch_dtype=DTYPE |
|
) |
|
if quantize: |
|
quantize_(model, quant_config) |
|
return model |
|
|
|
|
|
def get_text_encoder_2(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None): |
|
if quant_ckpt is not None: |
|
config = T5Config.from_pretrained(FLUX_CHECKPOINT, subfolder="text_encoder_2") |
|
model = T5EncoderModel(config).to(DTYPE) |
|
state_dict = torch.load(quant_ckpt, map_location="cpu") |
|
print(f"Loaded {quant_ckpt}") |
|
model.load_state_dict(state_dict, assign=True) |
|
return model |
|
|
|
model = T5EncoderModel.from_pretrained( |
|
FLUX_CHECKPOINT, subfolder="text_encoder_2", torch_dtype=DTYPE |
|
) |
|
if quantize: |
|
quantize_(model, quant_config) |
|
return model |
|
|
|
|
|
def get_vae(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None): |
|
if quant_ckpt is not None: |
|
config = AutoencoderKL.load_config(FLUX_CHECKPOINT, subfolder="vae") |
|
model = AutoencoderKL.from_config(config).to(DTYPE) |
|
state_dict = torch.load(quant_ckpt, map_location="cpu") |
|
model.load_state_dict(state_dict, assign=True) |
|
print(f"Loaded {quant_ckpt}") |
|
return model |
|
model = AutoencoderKL.from_pretrained( |
|
FLUX_CHECKPOINT, subfolder="vae", torch_dtype=DTYPE |
|
) |
|
if quantize: |
|
quantize_(model, quant_config) |
|
return model |
|
|
|
|
|
def empty_cache(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
def load_pipeline() -> FluxPipeline: |
|
empty_cache() |
|
|
|
pipe = FluxPipeline.from_pretrained(FLUX_CHECKPOINT, |
|
torch_dtype=DTYPE) |
|
|
|
pipe.text_encoder_2.to(memory_format=torch.channels_last) |
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.vae = torch.compile(pipe.vae) |
|
|
|
pipe._exclude_from_cpu_offload = ["vae"] |
|
|
|
pipe.enable_sequential_cpu_offload() |
|
|
|
empty_cache() |
|
pipe("cat", guidance_scale=0., max_sequence_length=256, num_inference_steps=4) |
|
return pipe |
|
|
|
@torch.inference_mode() |
|
def infer(request: TextToImageRequest, _pipeline: FluxPipeline) -> Image: |
|
if request.seed is None: |
|
generator = None |
|
else: |
|
generator = Generator(device="cuda").manual_seed(request.seed) |
|
|
|
empty_cache() |
|
image = _pipeline(prompt=request.prompt, |
|
width=request.width, |
|
height=request.height, |
|
guidance_scale=0.0, |
|
generator=generator, |
|
output_type="pil", |
|
max_sequence_length=256, |
|
num_inference_steps=NUM_STEPS).images[0] |
|
return image |
|
|