--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioBERT_BioNLP13CG_NER_new results: [] --- # BioBERT_BioNLP13CG_NER_new This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1721 - Precision: 0.8444 - Recall: 0.8396 - F1: 0.8420 - Accuracy: 0.9571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 191 | 0.2112 | 0.8333 | 0.8134 | 0.8232 | 0.9507 | | No log | 2.0 | 382 | 0.1744 | 0.8304 | 0.8400 | 0.8352 | 0.9557 | | 0.3204 | 3.0 | 573 | 0.1721 | 0.8444 | 0.8396 | 0.8420 | 0.9571 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0