--- base_model: medicalai/ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ClinicalBERT_CRAFT_NER_new results: [] --- # ClinicalBERT_CRAFT_NER_new This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1629 - Precision: 0.9605 - Recall: 0.9616 - F1: 0.9610 - Accuracy: 0.9602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2622 | 1.0 | 695 | 0.1701 | 0.9555 | 0.9570 | 0.9563 | 0.9544 | | 0.0947 | 2.0 | 1390 | 0.1616 | 0.9592 | 0.9606 | 0.9599 | 0.9589 | | 0.0543 | 3.0 | 2085 | 0.1629 | 0.9605 | 0.9616 | 0.9610 | 0.9602 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0