judithrosell
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: m3rg-iitd/matscibert
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: MatSciBERT_ST_DA_1000
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# MatSciBERT_ST_DA_1000
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1669
|
25 |
+
- Precision: 0.8484
|
26 |
+
- Recall: 0.8572
|
27 |
+
- F1: 0.8528
|
28 |
+
- Accuracy: 0.9724
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 16
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| No log | 1.0 | 495 | 0.1097 | 0.8373 | 0.8310 | 0.8341 | 0.9692 |
|
60 |
+
| 0.1746 | 2.0 | 990 | 0.0968 | 0.8355 | 0.8550 | 0.8452 | 0.9720 |
|
61 |
+
| 0.0592 | 3.0 | 1485 | 0.1072 | 0.8405 | 0.8497 | 0.8451 | 0.9711 |
|
62 |
+
| 0.0316 | 4.0 | 1980 | 0.1302 | 0.8451 | 0.8468 | 0.8459 | 0.9709 |
|
63 |
+
| 0.017 | 5.0 | 2475 | 0.1426 | 0.8381 | 0.8448 | 0.8415 | 0.9702 |
|
64 |
+
| 0.0102 | 6.0 | 2970 | 0.1503 | 0.8456 | 0.8470 | 0.8463 | 0.9711 |
|
65 |
+
| 0.0058 | 7.0 | 3465 | 0.1528 | 0.8466 | 0.8509 | 0.8487 | 0.9721 |
|
66 |
+
| 0.0035 | 8.0 | 3960 | 0.1565 | 0.8459 | 0.8521 | 0.8490 | 0.9719 |
|
67 |
+
| 0.0027 | 9.0 | 4455 | 0.1592 | 0.8531 | 0.8562 | 0.8547 | 0.9728 |
|
68 |
+
| 0.0017 | 10.0 | 4950 | 0.1669 | 0.8484 | 0.8572 | 0.8528 | 0.9724 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.44.2
|
74 |
+
- Pytorch 2.4.0+cu121
|
75 |
+
- Datasets 2.21.0
|
76 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437387124
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cbdb1925f5beaff4f5f8ef5d1f79555dd478dd7279a04c13c8de8ee2c809776
|
3 |
size 437387124
|
runs/Sep07_10-46-38_a76f4676d222/events.out.tfevents.1725706001.a76f4676d222.273.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7505423023d4400be6498795567c14c42e9e7f0d509e9c8c89e4db2f1754f6f3
|
3 |
+
size 12975
|