File size: 4,032 Bytes
cb70b64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: mixtral-lora-less-modules
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: inst

datasets:
  - path: ./data/raw_format/tool_used_training.jsonl
    type: sharegpt
    conversation: mistral
  - path: ./data/raw_format/tool_not_used_training.jsonl
    type: sharegpt
    conversation: mistral
  - path: ./data/raw_format/no_tools_training.jsonl
    type: sharegpt
    conversation: mistral

dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./mixtral-lora-2-epochs-r64

adapter: qlora
lora_model_dir:

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out:
hub_model_id: liuylhf/mixtral-lora-less-modules
hub_strategy: end

lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: function-call
wandb_name: mixtral-instruct-raw-data-v3
wandb_log_model: end

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.001
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

# loss_watchdog_threshold: 5.0
# loss_watchdog_patience: 3

warmup_steps: 10
# evals_per_epoch: 20
eval_steps: 0.1
save_steps: 0.1
eval_table_size:
eval_max_new_tokens: 256
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 1.0
fsdp:
fsdp_config:
```

</details><br>

# mixtral-lora-less-modules

This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1904

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2966        | 0.0   | 1    | 3.2222          |
| 0.1826        | 0.4   | 123  | 0.2012          |
| 0.1729        | 0.8   | 246  | 0.1925          |
| 0.1852        | 1.19  | 369  | 0.1913          |
| 0.1463        | 1.59  | 492  | 0.1857          |
| 0.1246        | 1.99  | 615  | 0.1840          |
| 0.1149        | 2.37  | 738  | 0.1872          |
| 0.076         | 2.77  | 861  | 0.1837          |
| 0.0763        | 3.15  | 984  | 0.1920          |
| 0.0906        | 3.56  | 1107 | 0.1904          |


### Framework versions

- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0