Julien Simon
commited on
Commit
·
b536abf
1
Parent(s):
ead8a38
Training in progress, epoch 3
Browse files- pytorch_model.bin +1 -1
- train-xlm.py +114 -0
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3114359925
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d62f1c5ab88bf2f7b3820b4b411f1b51a423796b4c6ad6fa37f8e21629d5c28d
|
3 |
size 3114359925
|
train-xlm.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
import numpy as np
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import (
|
5 |
+
AutoTokenizer,
|
6 |
+
AutoModelForSequenceClassification,
|
7 |
+
Trainer,
|
8 |
+
TrainingArguments,
|
9 |
+
)
|
10 |
+
|
11 |
+
dataset_id = "google/fleurs"
|
12 |
+
model_id = "facebook/xlm-v-base"
|
13 |
+
metric_name = "accuracy"
|
14 |
+
|
15 |
+
# Keep only the raw transcription and the language id (which we'll use as label)
|
16 |
+
columns_to_remove = [
|
17 |
+
"audio",
|
18 |
+
"id",
|
19 |
+
"num_samples",
|
20 |
+
"path",
|
21 |
+
"transcription",
|
22 |
+
"gender",
|
23 |
+
"language",
|
24 |
+
"lang_group_id",
|
25 |
+
]
|
26 |
+
|
27 |
+
train, val = load_dataset(
|
28 |
+
dataset_id, "all", split=["train", "validation"], ignore_verifications=True
|
29 |
+
)
|
30 |
+
|
31 |
+
# Build the label2id and id2label dictionaries
|
32 |
+
|
33 |
+
unique_langs = set()
|
34 |
+
label2id = {}
|
35 |
+
id2label = {}
|
36 |
+
for lang, lang_id in zip(val["language"], val["lang_id"]):
|
37 |
+
if lang not in unique_langs:
|
38 |
+
unique_langs.add(lang)
|
39 |
+
id2label[lang_id] = lang
|
40 |
+
label2id[lang] = lang_id
|
41 |
+
|
42 |
+
id2label = dict(sorted(id2label.items(), key=lambda item: item[0]))
|
43 |
+
label2id = dict(sorted(label2id.items(), key=lambda item: item[1]))
|
44 |
+
|
45 |
+
train = train.remove_columns(columns_to_remove)
|
46 |
+
val = val.remove_columns(columns_to_remove)
|
47 |
+
train = train.rename_column("raw_transcription", "text")
|
48 |
+
val = val.rename_column("raw_transcription", "text")
|
49 |
+
train = train.rename_column("lang_id", "label")
|
50 |
+
val = val.rename_column("lang_id", "label")
|
51 |
+
|
52 |
+
train = train.shuffle(seed=42)
|
53 |
+
val = val.shuffle(seed=42)
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
56 |
+
|
57 |
+
|
58 |
+
def preprocess(data):
|
59 |
+
return tokenizer(data["text"], truncation=True)
|
60 |
+
|
61 |
+
|
62 |
+
processed_train = train.map(preprocess, batched=True)
|
63 |
+
processed_val = val.map(preprocess, batched=True)
|
64 |
+
|
65 |
+
print(processed_train)
|
66 |
+
print(processed_val)
|
67 |
+
|
68 |
+
# Fine-tune the model
|
69 |
+
|
70 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
71 |
+
model_id,
|
72 |
+
num_labels=len(id2label),
|
73 |
+
label2id=label2id,
|
74 |
+
id2label=id2label,
|
75 |
+
ignore_mismatched_sizes=True,
|
76 |
+
)
|
77 |
+
|
78 |
+
args = TrainingArguments(
|
79 |
+
"xlm-v-base-language-id",
|
80 |
+
learning_rate=3e-5,
|
81 |
+
warmup_ratio=0.1,
|
82 |
+
per_device_train_batch_size=16,
|
83 |
+
gradient_accumulation_steps=4,
|
84 |
+
per_device_eval_batch_size=16,
|
85 |
+
num_train_epochs=5,
|
86 |
+
load_best_model_at_end=True,
|
87 |
+
metric_for_best_model=metric_name,
|
88 |
+
evaluation_strategy="epoch",
|
89 |
+
save_strategy="epoch",
|
90 |
+
logging_steps=10,
|
91 |
+
fp16=True,
|
92 |
+
push_to_hub=True,
|
93 |
+
)
|
94 |
+
|
95 |
+
metric = evaluate.load(metric_name)
|
96 |
+
|
97 |
+
|
98 |
+
def compute_metrics(eval_pred):
|
99 |
+
predictions = np.argmax(eval_pred.predictions, axis=1)
|
100 |
+
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
101 |
+
|
102 |
+
|
103 |
+
trainer = Trainer(
|
104 |
+
model,
|
105 |
+
args,
|
106 |
+
train_dataset=processed_train,
|
107 |
+
eval_dataset=processed_val,
|
108 |
+
tokenizer=tokenizer,
|
109 |
+
compute_metrics=compute_metrics,
|
110 |
+
)
|
111 |
+
|
112 |
+
trainer.train()
|
113 |
+
|
114 |
+
trainer.save_model("./my_model")
|