--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper-squeezeformer-V9-mutliconv results: [] --- # Whisper-squeezeformer-V9-mutliconv This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: 0.1799 - Wer: 11.3645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 20 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2500 - training_steps: 45000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.7863 | 1.0 | 2500 | 3.8844 | 119.2635 | | 3.9844 | 2.0 | 5000 | 3.7326 | 132.0431 | | 3.459 | 3.0 | 7500 | 1.2427 | 72.6510 | | 0.4598 | 4.0 | 10000 | 0.4232 | 23.4841 | | 0.1931 | 5.0 | 12500 | 0.3479 | 20.3629 | | 0.1096 | 6.0 | 15000 | 0.3255 | 17.5574 | | 0.0631 | 7.0 | 17500 | 0.3251 | 16.8252 | | 0.2473 | 8.0 | 20000 | 0.2452 | 14.4781 | | 0.1433 | 9.0 | 22500 | 0.2323 | 13.0782 | | 0.3067 | 10.0 | 25000 | 0.2224 | 14.5675 | | 0.2769 | 11.0 | 27500 | 0.2015 | 13.2323 | | 0.1853 | 12.0 | 30000 | 0.2004 | 14.1015 | | 0.1308 | 13.0 | 32500 | 0.2011 | 13.2494 | | 0.2435 | 14.0 | 35000 | 0.1830 | 11.9066 | | 0.1786 | 15.0 | 37500 | 0.1804 | 12.7948 | | 0.4194 | 16.0 | 40000 | 0.1833 | 10.3469 | | 0.3283 | 17.0 | 42500 | 0.1818 | 10.2785 | | 0.2936 | 18.0 | 45000 | 0.1799 | 11.3645 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.2.0 - Tokenizers 0.20.3