--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper-squeezeformer-NSQU-whisper-sparse-A results: [] --- # Whisper-squeezeformer-NSQU-whisper-sparse-A This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the LibriSpeech dataset. It achieves the following results on the evaluation set: - Loss: 0.1860 - Wer: 9.1296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 20 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - training_steps: 36000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 3.89 | 1.0 | 3000 | 3.2878 | 114.5015 | | 1.1579 | 2.0 | 6000 | 0.7947 | 42.0578 | | 0.3888 | 3.0 | 9000 | 0.7379 | 36.9314 | | 0.2242 | 4.0 | 12000 | 0.7417 | 35.9172 | | 0.5221 | 5.0 | 15000 | 0.6811 | 32.7808 | | 0.324 | 6.0 | 18000 | 0.6716 | 32.0457 | | 0.2034 | 7.0 | 21000 | 0.6845 | 32.0073 | | 0.2177 | 9.6 | 24000 | 0.1991 | 10.8624 | | 0.127 | 10.8 | 27000 | 0.1856 | 10.5485 | | 0.0909 | 12.0 | 30000 | 0.1838 | 9.5918 | | 0.0785 | 13.2 | 33000 | 0.1849 | 9.1030 | | 0.0595 | 14.4 | 36000 | 0.1860 | 9.1296 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0