--- tags: autotrain language: ja widget: - text: "I love AutoTrain 🤗" datasets: - jurader/autotrain-data-livedoor_news co2_eq_emissions: 0.02886635131127639 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 732022289 - CO2 Emissions (in grams): 0.02886635131127639 ## Validation Metrics - Loss: 0.19849611818790436 - Accuracy: 0.9471186440677966 - Macro F1: 0.9441816841379956 - Micro F1: 0.9471186440677966 - Weighted F1: 0.9470801715002611 - Macro Precision: 0.945983665608131 - Micro Precision: 0.9471186440677966 - Weighted Precision: 0.9475574732458715 - Macro Recall: 0.9429694962141204 - Micro Recall: 0.9471186440677966 - Weighted Recall: 0.9471186440677966 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/jurader/autotrain-livedoor_news-732022289 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jurader/autotrain-livedoor_news-732022289", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jurader/autotrain-livedoor_news-732022289", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```