jurikuehn commited on
Commit
3574d1d
·
1 Parent(s): 1d4b971

End of training

Browse files
Files changed (1) hide show
  1. README.md +45 -21
README.md CHANGED
@@ -1,28 +1,52 @@
1
  ---
2
- library_name: peft
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ## Training procedure
5
 
 
6
 
7
- The following `bitsandbytes` quantization config was used during training:
8
- - quant_method: gptq
9
- - bits: 4
10
- - tokenizer: None
11
- - dataset: None
12
- - group_size: 128
13
- - damp_percent: 0.1
14
- - desc_act: True
15
- - sym: True
16
- - true_sequential: True
17
- - use_cuda_fp16: False
18
- - model_seqlen: None
19
- - block_name_to_quantize: None
20
- - module_name_preceding_first_block: None
21
- - batch_size: 1
22
- - pad_token_id: None
23
- - disable_exllama: True
24
- - max_input_length: None
25
- ### Framework versions
26
 
27
 
28
- - PEFT 0.5.0
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: mistral-finetuned-samsum
8
+ results: []
9
  ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # mistral-finetuned-samsum
15
+
16
+ This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset.
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
  ## Training procedure
31
 
32
+ ### Training hyperparameters
33
 
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 0.0002
36
+ - train_batch_size: 8
37
+ - eval_batch_size: 8
38
+ - seed: 42
39
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
+ - lr_scheduler_type: cosine
41
+ - training_steps: 250
42
+
43
+ ### Training results
 
 
 
 
 
 
 
 
 
44
 
45
 
46
+
47
+ ### Framework versions
48
+
49
+ - Transformers 4.34.0
50
+ - Pytorch 2.0.1+cu118
51
+ - Datasets 2.14.5
52
+ - Tokenizers 0.14.1