File size: 5,447 Bytes
42963e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model: allenai/tulu-2-7b
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: tulu-2-7b-full-UF-5e-7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tulu-2-7b-full-UF-5e-7

This model is a fine-tuned version of [allenai/tulu-2-7b](https://huggingface.co/allenai/tulu-2-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9017
- Rewards/chosen: -4.8659
- Rewards/rejected: -5.8048
- Rewards/accuracies: 0.6230
- Rewards/margins: 0.9389
- Rewards/margins Max: 5.6516
- Rewards/margins Min: -2.8163
- Rewards/margins Std: 2.7854
- Logps/rejected: -916.6636
- Logps/chosen: -832.4283
- Logits/rejected: 0.4957
- Logits/chosen: 0.2899

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Rewards/margins Max | Rewards/margins Min | Rewards/margins Std | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:-------------------:|:-------------------:|:-------------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6816        | 0.07  | 100  | 0.6919          | 0.0000         | -0.0020          | 0.5417             | 0.0021          | 0.0277              | -0.0245             | 0.0175              | -336.3843      | -345.8331    | -1.1956         | -1.1695       |
| 0.5468        | 0.15  | 200  | 0.6793          | -0.1136        | -0.1432          | 0.5794             | 0.0296          | 0.2495              | -0.1965             | 0.1511              | -350.5013      | -357.1989    | -1.1509         | -1.1466       |
| 0.3597        | 0.22  | 300  | 0.6788          | -0.9347        | -1.0641          | 0.5714             | 0.1294          | 1.0084              | -0.7320             | 0.5779              | -442.5906      | -439.3020    | -1.0512         | -1.0629       |
| 0.2059        | 0.29  | 400  | 0.7172          | -1.9680        | -2.3061          | 0.5972             | 0.3381          | 2.3443              | -1.3886             | 1.2205              | -566.7862      | -542.6320    | -0.8695         | -0.8807       |
| 0.1354        | 0.37  | 500  | 0.8082          | -3.1553        | -3.7843          | 0.6190             | 0.6290          | 4.0818              | -2.2017             | 2.0321              | -714.6080      | -661.3674    | -0.1617         | -0.2554       |
| 0.1327        | 0.44  | 600  | 0.8436          | -3.8517        | -4.6192          | 0.6190             | 0.7675          | 4.8313              | -2.4317             | 2.3526              | -798.1056      | -731.0093    | 0.1600          | 0.0173        |
| 0.0777        | 0.52  | 700  | 0.9893          | -4.9432        | -5.9282          | 0.6190             | 0.9850          | 6.3532              | -3.2959             | 3.1250              | -929.0052      | -840.1605    | 0.6301          | 0.4163        |
| 0.0638        | 0.59  | 800  | 0.8086          | -3.8655        | -4.6357          | 0.6190             | 0.7702          | 4.5021              | -2.2919             | 2.2427              | -799.7516      | -732.3853    | 0.2889          | 0.1244        |
| 0.0997        | 0.66  | 900  | 0.8639          | -4.4406        | -5.3058          | 0.6270             | 0.8652          | 5.1592              | -2.6378             | 2.5658              | -866.7603      | -789.8954    | 0.3918          | 0.2055        |
| 0.0708        | 0.74  | 1000 | 0.8618          | -4.4546        | -5.2895          | 0.6230             | 0.8349          | 5.0604              | -2.6224             | 2.5213              | -865.1302      | -791.2946    | 0.4063          | 0.2199        |
| 0.141         | 0.81  | 1100 | 0.9049          | -4.8648        | -5.7977          | 0.6190             | 0.9330          | 5.6327              | -2.8439             | 2.7856              | -915.9548      | -832.3105    | 0.5083          | 0.3017        |
| 0.0775        | 0.88  | 1200 | 0.9049          | -4.9040        | -5.8585          | 0.6210             | 0.9546          | 5.7130              | -2.8316             | 2.8132              | -922.0319      | -836.2313    | 0.5172          | 0.3074        |
| 0.0464        | 0.96  | 1300 | 0.9017          | -4.8659        | -5.8048          | 0.6230             | 0.9389          | 5.6516              | -2.8163             | 2.7854              | -916.6636      | -832.4283    | 0.4957          | 0.2899        |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2