File size: 4,928 Bytes
e42e013 789a49f e42e013 cf41326 e42e013 8973890 e42e013 8973890 e42e013 8973890 e42e013 8973890 e42e013 5f170a3 8ace388 5f170a3 e42e013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
license: mit
library_name: transformers
tags:
- axolotl
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: phi2-bunny
results: []
datasets:
- WhiteRabbitNeo/WRN-Chapter-1
- WhiteRabbitNeo/WRN-Chapter-2
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: false
# trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: WhiteRabbitNeo/WRN-Chapter-1
type:
system_prompt: ""
field_system: system
field_instruction: instruction
field_output: response
prompt_style: chatml
- path: WhiteRabbitNeo/WRN-Chapter-2
type:
system_prompt: ""
field_system: system
field_instruction: instruction
field_output: response
prompt_style: chatml
dataset_prepared_path: ./phi2-bunny/last-run-prepared
val_set_size: 0.05
output_dir: ./phi2-bunny/
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
hub_model_id: justinj92/phi2-bunny
wandb_project: phi2-bunny
wandb_entity: justinjoy-5
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 5
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 0.00001
max_grad_norm: 1000.0
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
chat_template: chatml
warmup_steps: 100
evals_per_epoch: 4
save_steps: 0.01
save_total_limit: 2
debug:
deepspeed:
weight_decay: 0.01
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|endoftext|>"
tokens:
- "<|im_start|>"
```
</details><br>
## Hardware
Azure 1xNC_H100 VM - 8 Hours Training Time
# phi2-bunny
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the WhiteRabbit Cybersecurity dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5347
## Model description
Phi-2 SLM
## Intended uses & limitations
Research & Learning
## ChatML Prompt
<|im_start|>system
You are Bunny, a helpful AI cyber researcher. Answer the Question in a logical, step-by-step manner that makes the reasoning process clear. Carefully analyze the question to identify the core issue or problem to be solved.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8645 | 0.0 | 1 | 0.7932 |
| 0.6246 | 0.25 | 228 | 0.6771 |
| 0.6449 | 0.5 | 456 | 0.6186 |
| 0.6658 | 0.75 | 684 | 0.6073 |
| 0.5419 | 1.0 | 912 | 0.5911 |
| 0.5477 | 1.24 | 1140 | 0.5878 |
| 0.612 | 1.49 | 1368 | 0.5715 |
| 0.6328 | 1.74 | 1596 | 0.5632 |
| 0.5082 | 1.99 | 1824 | 0.5534 |
| 0.5807 | 2.24 | 2052 | 0.5513 |
| 0.4775 | 2.49 | 2280 | 0.5448 |
| 0.514 | 2.74 | 2508 | 0.5430 |
| 0.4943 | 2.99 | 2736 | 0.5398 |
| 0.5012 | 3.22 | 2964 | 0.5396 |
| 0.5203 | 3.48 | 3192 | 0.5371 |
| 0.5112 | 3.73 | 3420 | 0.5356 |
| 0.4978 | 3.98 | 3648 | 0.5351 |
| 0.5642 | 4.22 | 3876 | 0.5348 |
| 0.5383 | 4.47 | 4104 | 0.5348 |
| 0.4679 | 4.72 | 4332 | 0.5347 |
### Framework versions
- PEFT 0.8.1.dev0
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0 |