--- license: mit library_name: peft tags: - axolotl - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi2-bunny results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: microsoft/phi-2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_llama_derived_model: false # trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: WhiteRabbitNeo/WRN-Chapter-1 type: system_prompt: "" field_system: system field_instruction: instruction field_output: response prompt_style: chatml - path: WhiteRabbitNeo/WRN-Chapter-2 type: system_prompt: "" field_system: system field_instruction: instruction field_output: response prompt_style: chatml dataset_prepared_path: ./phi2-bunny/last-run-prepared val_set_size: 0.05 output_dir: ./phi2-bunny/ sequence_len: 2048 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head hub_model_id: justinj92/phi2-bunny wandb_project: phi2-bunny wandb_entity: justinjoy-5 wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 2 num_epochs: 5 optimizer: paged_adamw_8bit adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 0.00001 max_grad_norm: 1000.0 lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: true bf16: true fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: local_rank: logging_steps: 1 xformers_attention: flash_attention: true chat_template: chatml warmup_steps: 100 evals_per_epoch: 4 save_steps: 0.01 save_total_limit: 2 debug: deepspeed: weight_decay: 0.01 fsdp: fsdp_config: resize_token_embeddings_to_32x: true special_tokens: eos_token: "<|im_end|>" pad_token: "<|endoftext|>" tokens: - "<|im_start|>" ```

## Hardware Azure 1xNC_H100 VM - 8 Hours Training Time # phi2-bunny This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the WhiteRabbit Cybersecurity dataset. It achieves the following results on the evaluation set: - Loss: 0.5347 ## Model description Phi-2 SLM ## Intended uses & limitations Research & Learning ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8645 | 0.0 | 1 | 0.7932 | | 0.6246 | 0.25 | 228 | 0.6771 | | 0.6449 | 0.5 | 456 | 0.6186 | | 0.6658 | 0.75 | 684 | 0.6073 | | 0.5419 | 1.0 | 912 | 0.5911 | | 0.5477 | 1.24 | 1140 | 0.5878 | | 0.612 | 1.49 | 1368 | 0.5715 | | 0.6328 | 1.74 | 1596 | 0.5632 | | 0.5082 | 1.99 | 1824 | 0.5534 | | 0.5807 | 2.24 | 2052 | 0.5513 | | 0.4775 | 2.49 | 2280 | 0.5448 | | 0.514 | 2.74 | 2508 | 0.5430 | | 0.4943 | 2.99 | 2736 | 0.5398 | | 0.5012 | 3.22 | 2964 | 0.5396 | | 0.5203 | 3.48 | 3192 | 0.5371 | | 0.5112 | 3.73 | 3420 | 0.5356 | | 0.4978 | 3.98 | 3648 | 0.5351 | | 0.5642 | 4.22 | 3876 | 0.5348 | | 0.5383 | 4.47 | 4104 | 0.5348 | | 0.4679 | 4.72 | 4332 | 0.5347 | ### Framework versions - PEFT 0.8.1.dev0 - Transformers 4.37.0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0