File size: 7,155 Bytes
743feee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd1

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6653
- Answer: {'precision': 0.6705756929637526, 'recall': 0.7775030902348579, 'f1': 0.7200915855752718, 'number': 809}
- Header: {'precision': 0.30275229357798167, 'recall': 0.2773109243697479, 'f1': 0.28947368421052627, 'number': 119}
- Question: {'precision': 0.7173732335827099, 'recall': 0.8103286384976526, 'f1': 0.7610229276895942, 'number': 1065}
- Overall Precision: 0.6778
- Overall Recall: 0.7652
- Overall F1: 0.7188
- Overall Accuracy: 0.7992

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                         | Header                                                                                                         | Question                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8388        | 1.0   | 10   | 1.6345          | {'precision': 0.010158013544018058, 'recall': 0.011124845488257108, 'f1': 0.010619469026548672, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.12983770287141075, 'recall': 0.09765258215962441, 'f1': 0.11146838156484459, 'number': 1065} | 0.0670            | 0.0567         | 0.0614     | 0.3424           |
| 1.5101        | 2.0   | 20   | 1.3279          | {'precision': 0.10227272727272728, 'recall': 0.08899876390605686, 'f1': 0.09517514871116987, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.3082191780821918, 'recall': 0.4225352112676056, 'f1': 0.3564356435643564, 'number': 1065}    | 0.2412            | 0.2619         | 0.2511     | 0.5546           |
| 1.196         | 3.0   | 30   | 1.0812          | {'precision': 0.33375, 'recall': 0.3300370828182942, 'f1': 0.3318831572405221, 'number': 809}                  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                    | {'precision': 0.4708233413269384, 'recall': 0.5530516431924882, 'f1': 0.5086355785837651, 'number': 1065}    | 0.4153            | 0.4295         | 0.4223     | 0.6283           |
| 0.957         | 4.0   | 40   | 0.8960          | {'precision': 0.5760082730093071, 'recall': 0.688504326328801, 'f1': 0.6272522522522522, 'number': 809}        | {'precision': 0.027777777777777776, 'recall': 0.008403361344537815, 'f1': 0.012903225806451613, 'number': 119} | {'precision': 0.6268939393939394, 'recall': 0.6215962441314554, 'f1': 0.6242338519566243, 'number': 1065}    | 0.5925            | 0.6121         | 0.6022     | 0.7315           |
| 0.7609        | 5.0   | 50   | 0.7756          | {'precision': 0.608955223880597, 'recall': 0.7564894932014833, 'f1': 0.6747519294377067, 'number': 809}        | {'precision': 0.11428571428571428, 'recall': 0.06722689075630252, 'f1': 0.08465608465608465, 'number': 119}    | {'precision': 0.6362098138747885, 'recall': 0.7061032863849765, 'f1': 0.669336893635959, 'number': 1065}     | 0.6079            | 0.6884         | 0.6456     | 0.7649           |
| 0.634         | 6.0   | 60   | 0.7261          | {'precision': 0.6207951070336392, 'recall': 0.7527812113720643, 'f1': 0.6804469273743018, 'number': 809}       | {'precision': 0.24, 'recall': 0.15126050420168066, 'f1': 0.18556701030927833, 'number': 119}                   | {'precision': 0.6666666666666666, 'recall': 0.7380281690140845, 'f1': 0.7005347593582888, 'number': 1065}    | 0.6322            | 0.7090         | 0.6684     | 0.7783           |
| 0.5815        | 7.0   | 70   | 0.6992          | {'precision': 0.6612377850162866, 'recall': 0.7527812113720643, 'f1': 0.7040462427745664, 'number': 809}       | {'precision': 0.27586206896551724, 'recall': 0.20168067226890757, 'f1': 0.23300970873786409, 'number': 119}    | {'precision': 0.6899841017488076, 'recall': 0.8150234741784037, 'f1': 0.7473095135600517, 'number': 1065}    | 0.6624            | 0.7531         | 0.7049     | 0.7906           |
| 0.5279        | 8.0   | 80   | 0.6827          | {'precision': 0.6687631027253669, 'recall': 0.788627935723115, 'f1': 0.7237663074305162, 'number': 809}        | {'precision': 0.3010752688172043, 'recall': 0.23529411764705882, 'f1': 0.2641509433962264, 'number': 119}      | {'precision': 0.7285464098073555, 'recall': 0.7812206572769953, 'f1': 0.7539646579066607, 'number': 1065}    | 0.6843            | 0.7516         | 0.7164     | 0.7973           |
| 0.4907        | 9.0   | 90   | 0.6732          | {'precision': 0.6609442060085837, 'recall': 0.761433868974042, 'f1': 0.707639287765652, 'number': 809}         | {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119}      | {'precision': 0.7145214521452146, 'recall': 0.8131455399061033, 'f1': 0.7606499780412823, 'number': 1065}    | 0.6732            | 0.7607         | 0.7143     | 0.7971           |
| 0.4734        | 10.0  | 100  | 0.6653          | {'precision': 0.6705756929637526, 'recall': 0.7775030902348579, 'f1': 0.7200915855752718, 'number': 809}       | {'precision': 0.30275229357798167, 'recall': 0.2773109243697479, 'f1': 0.28947368421052627, 'number': 119}     | {'precision': 0.7173732335827099, 'recall': 0.8103286384976526, 'f1': 0.7610229276895942, 'number': 1065}    | 0.6778            | 0.7652         | 0.7188     | 0.7992           |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1