Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2023.05 +/- 313.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5a090c03375f25992a374439694317083b95cde253d72077cea49401c75c7c2
|
3 |
+
size 132900
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f768408a8c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f768408a950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f768408a9e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f768408aa70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f768408ab00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f768408ab90>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f768408ac20>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f768408acb0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f768408ad40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f768408add0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f768408ae60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f768408aef0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f76844e9b00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 16,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675228208155557650,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAGoOHD8bFss8b/sJP966uD9Oj/y/pgcXvwojlT0mLVi/QrgWPw9Q377WfHs/tkGsv/7BnL9fwkC+/tQOvnQ1Bz84n9m/D6c3voK0Oj/hNqy9OgS2PniiSz8GVHI+8nm/Pw4UUT/5GQM/zVQGPwmBp7/oEQ8/h98cv0lrCj+zd6Y/xel9vTjEYj7XTYi+1LUxv3UE+T69Pqg/5MkoPw0jhD5Pmno81gyEv3Ue3T5+DnS//fuxvp6eNL8XPjQ+R6iIP1KKFL/jCO88+fZyP1fYy74OFFE/+RkDP81UBj8IoEM/d9pAPp27yL8luLE7k33XP9zHx7+cPFM/f0yEvgG98b6r0PU+2QyqPlv1g7zwKYa/A4e4vin1iT+6wLY++YSgPwNLtr9dLFg/Y1HAPmuEuL9mHUU9mvUevzEtJD8sYlM/17mcv/kZAz/NVAY/CKBDP6YVAD/yhRu/ebAKP+Ohwj/hZJY/vGqSP88vUr+YoA+/2BNBvgTKaj+4qZs+UVxNP+T7VT8hWRu+E8g/P59sTL9Rki0/xxqEv59YC7+PzJk/w1UUvwt8kj09rX4/qYlQv9e5nL/5GQM/zVQGPwmBp78cGm4/eXJhv8PR7D7V6zw+mS4hP8hyB79J4oK//kdbv7dICz8es6K8Lsg0vzNP5z72pIg/v8i+Pnb4bD9r9g894PmUP5Ar1r1qHX+/Rgupv8REFL/GTL88BGs5QGFHbD7XuZy/+RkDP81UBj8IoEM/HsbevBth5b03rw8/cGDmPqxFrj8iaqS/J8zYPn3g2L5r3g0/Q4/wvW5vID9473u/kHuLv7LYjD/Jx4U+UK4ZPrtf4b4xxi8/8tsoPwM73D4P2Q+/aC8PPxC/Qb0dML0+DhRRP5/x+b/NVAY/CKBDP7Yn+D4jGFq/tlHyPpAJyz9w/pC/gwg1P5c6+75RjEy/Bm0LP4ws3ryXNIo9eDevv4Ok9L5PM5k/WQgIP7e1jz9nkkm/SbqEP4eOrz41xyLAGaWTvl92hT2TJ5o/bso4P9e5nL/5GQM/zVQGPwigQz+WC5M/v2uPv7bEsj4M6KE/vHpcv0wm1T1rrCg+zL6PvxEwET/4nmy+mVsYQBWKgr44QKy/eb/kPqklqb6Rg6W/s2K+v3QUqb79dD4/j+nMPHZg+714mrE/revTvqjMjj8OFFE/n/H5v81UBj8Jgae/E2EXPhw85b6vrxA/pR2bPxO86L/XyT0/wIhCvwNlHr/6Lgw/CYBavYSJ6r5Tf8C/GIdRv5i4UT9BfTA/fuifP3wHL793zUQ/PFsmPuiACsCzNdU+h/Wpvg4Nkz8vfVA/17mcv/kZAz/NVAY/CKBDPyevkD4vlb+/3FOXPRa5ED/bXrG+RVL+vkZcIL+oeVW/ukANPyuAvL0cmIK+eSG6v+bDfz5XHk8/XM9rP5xKoD/+MJE+adzJPzND6DzCXcq/AjYkP5PGiT42MLM/YSsJP9e5nL/5GQM/zVQGPwigQz+6+Nk+mDHkvke8ED9tRgY/NSqRPxfsHz81LVo9dvVZv1GJCz9pYLO89eBkP+KZBj+3Si2+5CfHv7lN0D73rqG/FiUKP7qKgL9t8Jc+Hd5tP8BWFL8U9/489dnPPWhPSb8OFFE/+RkDP81UBj8Jgae/FM88PxgaQ79xzgA/YPXcP+1jor51zV0/qo3Bv1OqCb/0QAs/Ey2UvCUUR784Bew+EeztvRSquT+2qW4/d6HvvYGrEL8F1SRAAQoav5jNCsDULSa+vJqev7ZuGUC66ck+17mcv/kZAz8u7/O/CKBDPyRLMLwi2Xq/hHvXPnnY1T8Nwdq/pZ9gvkUPmL/UP/2+AyILP8hmkb2o7gu/UygfwIfvWb/jDCw/w9h1P5Lj5T//ase/R00OP0J18D59aA/AIIgZP80Zhr30VKI/XKuAPw4UUT/5GQM/Lu/zvwmBp7+RoBg/1l+Jv9v6vz4njpw/4SS/vy73Hj3V3iG+Meluv1MbDT9dILq9XuAjPyKy5r/L4Ym/TKlSP71ryD3iACs/Bel5v96D5j6uVho/KlSBv6pt6D0M9UU//s2bP0JXAkAOFFE/+RkDP81UBj8Jgae/jRSHP9cox7+dW5A8ZKO2Py4Fpr/Jnvo+Hb+oPvsTWL9lrQI/+7XNvn5k5T8GNc6/PKkuv28Piz++7Ny+VGJIP0iZyb9usTs/nrMjP4hYnb9LLcM9rA6bvqDDkT880UQ/DhRRP/kZAz/NVAY/CYGnv9LtCz84Tm896BkIP6C2lj+Jc0A/N4izP5jyab/+0Eu/Owj0PoHzIMB6tBi/+HEmP78ufT599nc90/9tP1SIKL0RXZs/R5yKvia5PL6c+EW/XgkZv+esWMAsG8k/pkdwvte5nL/5GQM/Lu/zvwigQz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAAAAAADlzoW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAClPqPQAAAABOWtm/AAAAAN+CxTsAAAAA7gn0PwAAAADJKdK9AAAAAH5g7T8AAAAAB+UWvQAAAADmNem/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1DBctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPltET4AAAAAooL+vwAAAABicbS9AAAAAL+c6T8AAAAADvy2PQAAAABdl/w/AAAAAKxF070AAAAAJLv+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9Bw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8T5W7AAAAAP44+78AAAAA+ue6vQAAAAD3z/g/AAAAAIwHjL0AAAAABE3oPwAAAADtiMG9AAAAAIjL/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ1UK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxIvbvQAAAAAcrOK/AAAAACOi+zwAAAAAzqAAQAAAAAAJJLO9AAAAAJFd9D8AAAAAYNSpPQAAAACIEPG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA19ddtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEIj4j0AAAAAD2TyvwAAAABFrrs9AAAAAO8N7D8AAAAAMXLWvAAAAAD+Auo/AAAAABIpg7sAAAAA+CEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLFqrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmGZc6AAAAANKA3b8AAAAAgK04PAAAAACe8e8/AAAAALY8dD0AAAAA7yzpPwAAAABkUPQ9AAAAAOQn9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1maM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnYlQvAAAAAA8VfS/AAAAAAqysbwAAAAAvsr/PwAAAAAst9g9AAAAALje9j8AAAAAF2/6vQAAAABPzdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0x4jNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPXkGToAAAAAueztvwAAAADr6HM9AAAAALTt2j8AAAAAZfLmPAAAAADJ9N0/AAAAAEmMg7wAAAAAudTuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhcOLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAXcbO8AAAAAJ614b8AAAAAUnGxvQAAAABdB+I/AAAAAIQ22TwAAAAAlUv3PwAAAADDMqU9AAAAAKTQ478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSdFq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyv2/PQAAAADUJ+C/AAAAAAyXEr4AAAAAGt/8PwAAAAD7v3Y9AAAAALsQ4D8AAAAACoDnvAAAAAADFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJukNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEXSzL0AAAAAvTr1vwAAAACjqwM+AAAAANWu2j8AAAAA+x0YPAAAAADQuOQ/AAAAANgAFz0AAAAAMu7ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFQTOjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB6kgY+AAAAAPLC3L8AAAAAS1sEPQAAAAAM0to/AAAAAJYn9T0AAAAAMFvxPwAAAADPu8e9AAAAAFRb678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0cK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALzzcvQAAAACiaOe/AAAAAIew470AAAAAscflPwAAAAAdcO+8AAAAAKmbAEAAAAAAm0QuvAAAAAArWui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALhOPtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDjLDT0AAAAAbd7YvwAAAADxlcs8AAAAAL3B7j8AAAAAC7fDvQAAAADRieY/AAAAAFElzL0AAAAAMtH/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJEhjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBH68S9AAAAAKAr8L8AAAAA90iGPQAAAADXC+g/AAAAAEF+5L0AAAAAr7TvPwAAAAC70fk7AAAAACiw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA+u2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdGkLPgAAAAAdPua/AAAAANX3270AAAAA0wT6PwAAAADZe5C9AAAAAHFt2z8AAAAASCzHuwAAAADLTdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ6uIdQwbl2MAWyUTegDjAF0lEdAme9BEBsAN3V9lChoBkdAnpeAeA/cFmgHTegDaAhHQJnwZrAP/aR1fZQoaAZHQKBIwNjslcBoB03oA2gIR0CZ8TGi5/b1dX2UKGgGR0Cf8uHpr1ujaAdN6ANoCEdAmfKG3OObRXV9lChoBkdAoIiJ9qk/KWgHTegDaAhHQJn19b4agmJ1fZQoaAZHQKDAFLeQ+2VoB03oA2gIR0CaAuhESdvsdX2UKGgGR0CgorbJfYz0aAdN6ANoCEdAmgQxnjABUHV9lChoBkdAoKiNIuoP1GgHTegDaAhHQJoPCNGViWp1fZQoaAZHQKB4CU6gdwNoB03oA2gIR0CaD/AVwgkkdX2UKGgGR0ChG1TbvgFYaAdN6ANoCEdAmhJ+avzOHHV9lChoBkdAobZwgieNDWgHTegDaAhHQJoVRsBQvYh1fZQoaAZHQKHwhQpnYg9oB03oA2gIR0CaFbTzd1uBdX2UKGgGR0ChWDtwBHTaaAdN6ANoCEdAmha9nf2saXV9lChoBkdAoRS6fL9uP2gHTegDaAhHQJoY5MrVe8h1fZQoaAZHQKFfNcvduYRoB03oA2gIR0CaGxXZ5AyEdX2UKGgGR0Cgu6K33HrAaAdN6ANoCEdAmhuRjJ+2E3V9lChoBkdAlkSgBo24u2gHTegDaAhHQJopP/giu+11fZQoaAZHQJ8xQjLSuyNoB03oA2gIR0CaKm/wiJO4dX2UKGgGR0CYtYXoTwlTaAdN6ANoCEdAmitDIvJzUHV9lChoBkdAn4oUug6EJ2gHTegDaAhHQJostp35eqt1fZQoaAZHQJvQNTyauwJoB03oA2gIR0CaMIBVuJk5dX2UKGgGR0CgzydweeWfaAdN6ANoCEdAmj0ISlFc6nV9lChoBkdAngnnPNVzZGgHTegDaAhHQJo+NGI9C/p1fZQoaAZHQJurKLLpzLhoB03oA2gIR0CaRwmukk8idX2UKGgGR0CdibHGS6lMaAdN6ANoCEdAmkgadH2AXnV9lChoBkdAnZ4eUt7KJWgHTegDaAhHQJpKuHTI/7l1fZQoaAZHQJsafWZqmCRoB03oA2gIR0CaTXfra/RFdX2UKGgGR0CdNA2B8QZoaAdN6ANoCEdAmk3qt9x6wHV9lChoBkdAnx89Net0WGgHTegDaAhHQJpPASPEKmd1fZQoaAZHQJ6fsv38GcFoB03oA2gIR0CaUN2/zreJdX2UKGgGR0CVVJ+wkgOjaAdN6ANoCEdAmlLsMd92HXV9lChoBkdAnlUIvN/vv2gHTegDaAhHQJpTV0dRzil1fZQoaAZHQJSXP4Glhw5oB03oA2gIR0CaX0dfb9IgdX2UKGgGR0ChgnOd5IH1aAdN6ANoCEdAmmCGwJPZZnV9lChoBkdAoak8zyjHn2gHTegDaAhHQJphT1TR6Wx1fZQoaAZHQJ56vYFqzqtoB03oA2gIR0CaYpk8A7xNdX2UKGgGR0CdMid07r9maAdN6ANoCEdAmmX7+PzWgHV9lChoBkdAoUeUFlkH2WgHTegDaAhHQJpxGl+EytV1fZQoaAZHQJ7R2Myad+ZoB03oA2gIR0CachQgcLjQdX2UKGgGR0CZ7QSzPa+OaAdN6ANoCEdAmnvbEHdGiHV9lChoBkdAoVh544ZMtmgHTegDaAhHQJp8pZZB9kV1fZQoaAZHQKBi3XarWAhoB03oA2gIR0CafyH1e0HAdX2UKGgGR0Ce0YjIJZ4faAdN6ANoCEdAmoH6Z+hGpnV9lChoBkdAnIYEWM0gsGgHTegDaAhHQJqCcKw6hg51fZQoaAZHQKDWEafBeoloB03oA2gIR0Cag37YTTOPdX2UKGgGR0Cf0CzdUKiPaAdN6ANoCEdAmoWM6/7BPHV9lChoBkdAn/wMOby6MGgHTegDaAhHQJqHgAEMb3p1fZQoaAZHQKA1/XkHUttoB03oA2gIR0Cah/lyzXz2dX2UKGgGR0Ce/A89Oh0yaAdN6ANoCEdAmpToTTOPenV9lChoBkdAndgq1G9YfWgHTegDaAhHQJqV+zw+dLB1fZQoaAZHQJ47BT6zmfZoB03oA2gIR0CalrXOnl4kdX2UKGgGR0CeZXJDVpbmaAdN6ANoCEdAmpgARPGhmHV9lChoBkdAnN5EqlP8AWgHTegDaAhHQJqbY8FINEx1fZQoaAZHQKAQaLDye7NoB03oA2gIR0CapuziS7oTdX2UKGgGR0CfdZ3TNMXaaAdN6ANoCEdAmqgFt0mtyXV9lChoBkdAnnLjr7fpEGgHTegDaAhHQJqwtDst03h1fZQoaAZHQKCggahHskZoB03oA2gIR0CasWBOYYzjdX2UKGgGR0CevlywfQruaAdN6ANoCEdAmrOohpxm03V9lChoBkdAnHIMDwH7g2gHTegDaAhHQJq147MgU111fZQoaAZHQJ8mnEIgNgBoB03oA2gIR0CatjtdAxBWdX2UKGgGR0Cc97slb/wRaAdN6ANoCEdAmrcfGQ0XQHV9lChoBkdAoB9raufVZ2gHTegDaAhHQJq5Lp8neBR1fZQoaAZHQKBEXCHARChoB03oA2gIR0Cau1I91U2ldX2UKGgGR0CgZPGmUGFBaAdN6ANoCEdAmrvDrZ8KHHV9lChoBkdAn0Cj9fkWAWgHTegDaAhHQJrHqr0aqCJ1fZQoaAZHQKF3AsLfDUFoB03oA2gIR0CayQaMaS9vdX2UKGgGR0CfTv/WDpTuaAdN6ANoCEdAmsnK0dBBzHV9lChoBkdAoOVamwaBJGgHTegDaAhHQJrLByBClad1fZQoaAZHQKAXyYR/ViFoB03oA2gIR0CazirjYI0JdX2UKGgGR0CfYhc1O0swaAdN6ANoCEdAmtlHoouwo3V9lChoBkdAoSjM8s+V1WgHTegDaAhHQJraSqdYnv51fZQoaAZHQKD3FEcbR4RoB03oA2gIR0Ca4//io86ndX2UKGgGR0ChPTykTHsDaAdN6ANoCEdAmuTD+NtIkXV9lChoBkdAoAee38XN1WgHTegDaAhHQJrnHK8tf5V1fZQoaAZHQKDSElBQemxoB03oA2gIR0Ca6c9n9NvgdX2UKGgGR0Cg2hP114gSaAdN6ANoCEdAmuo38n/kvXV9lChoBkdAoXi4rc0tRWgHTegDaAhHQJrrRdVvMr51fZQoaAZHQKIa0HC4z8BoB03oA2gIR0Ca7aOxSpBHdX2UKGgGR0CfmveeWfK7aAdN6ANoCEdAmu+0RradtnV9lChoBkdAofosBsANomgHTegDaAhHQJrwLHS4OMF1fZQoaAZHQKAl4ATZg5RoB03oA2gIR0Ca/H9tdiUgdX2UKGgGR0CenmKpDNQkaAdN6ANoCEdAmv2uCkGiYnV9lChoBkdAnv78lw97nmgHTegDaAhHQJr+Yg2ZRbd1fZQoaAZHQJ9Yh/XoTwloB03oA2gIR0Ca/63gUDdQdX2UKGgGR0CgMR0hvBJqaAdN6ANoCEdAmwK44ACGOHV9lChoBkdAoEW3Vf/m1mgHTegDaAhHQJsOphCtzS11fZQoaAZHQKD7Rt/FzdVoB03oA2gIR0CbD8xYq5LAdX2UKGgGR0CgcfuRDCxeaAdN6ANoCEdAmxkSqU/wAnV9lChoBkdAoCaqS1Vo6GgHTegDaAhHQJsZwhfShJ11fZQoaAZHQJ79QifQKKJoB03oA2gIR0CbG+N4qwyJdX2UKGgGR0Chm9lq8DjjaAdN6ANoCEdAmx6Sr5qM33V9lChoBkdAoWRDUVi4KGgHTegDaAhHQJsfB9Sde6Z1fZQoaAZHQKAu4cCHRCxoB03oA2gIR0CbICZydWhidX2UKGgGR0CgrMajN6gNaAdN6ANoCEdAmyJAkgOjI3V9lChoBkdAoSvke4kNWmgHTegDaAhHQJskWR3eN1h1fZQoaAZHQKFOpJ+2E01oB03oA2gIR0CbJNN1yNn5dX2UKGgGR0Cg4L/IS13MaAdN6ANoCEdAmzDYc3l0YHV9lChoBkdAoRphcX3xnWgHTegDaAhHQJsyEpvxYq51fZQoaAZHQJcdlRDTjNpoB03oA2gIR0CbMteWv8qGdX2UKGgGR0ChBYvkq+ajaAdN6ANoCEdAmzQTfBN21XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 15625,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5ea67dea680f047be2b6d477f824717e10ee8ea82d5754016f015f88a938fd6
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:034cbebb8b82dad7def829e68da221bcc6b2ebf60551e6b04ed075b2d6ebe9c1
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
|
2 |
+
- Python: 3.10.8
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f768408a8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f768408a950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f768408a9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f768408aa70>", "_build": "<function ActorCriticPolicy._build at 0x7f768408ab00>", "forward": "<function ActorCriticPolicy.forward at 0x7f768408ab90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f768408ac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f768408acb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f768408ad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f768408add0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f768408ae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f768408aef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f76844e9b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675228208155557650, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAGoOHD8bFss8b/sJP966uD9Oj/y/pgcXvwojlT0mLVi/QrgWPw9Q377WfHs/tkGsv/7BnL9fwkC+/tQOvnQ1Bz84n9m/D6c3voK0Oj/hNqy9OgS2PniiSz8GVHI+8nm/Pw4UUT/5GQM/zVQGPwmBp7/oEQ8/h98cv0lrCj+zd6Y/xel9vTjEYj7XTYi+1LUxv3UE+T69Pqg/5MkoPw0jhD5Pmno81gyEv3Ue3T5+DnS//fuxvp6eNL8XPjQ+R6iIP1KKFL/jCO88+fZyP1fYy74OFFE/+RkDP81UBj8IoEM/d9pAPp27yL8luLE7k33XP9zHx7+cPFM/f0yEvgG98b6r0PU+2QyqPlv1g7zwKYa/A4e4vin1iT+6wLY++YSgPwNLtr9dLFg/Y1HAPmuEuL9mHUU9mvUevzEtJD8sYlM/17mcv/kZAz/NVAY/CKBDP6YVAD/yhRu/ebAKP+Ohwj/hZJY/vGqSP88vUr+YoA+/2BNBvgTKaj+4qZs+UVxNP+T7VT8hWRu+E8g/P59sTL9Rki0/xxqEv59YC7+PzJk/w1UUvwt8kj09rX4/qYlQv9e5nL/5GQM/zVQGPwmBp78cGm4/eXJhv8PR7D7V6zw+mS4hP8hyB79J4oK//kdbv7dICz8es6K8Lsg0vzNP5z72pIg/v8i+Pnb4bD9r9g894PmUP5Ar1r1qHX+/Rgupv8REFL/GTL88BGs5QGFHbD7XuZy/+RkDP81UBj8IoEM/HsbevBth5b03rw8/cGDmPqxFrj8iaqS/J8zYPn3g2L5r3g0/Q4/wvW5vID9473u/kHuLv7LYjD/Jx4U+UK4ZPrtf4b4xxi8/8tsoPwM73D4P2Q+/aC8PPxC/Qb0dML0+DhRRP5/x+b/NVAY/CKBDP7Yn+D4jGFq/tlHyPpAJyz9w/pC/gwg1P5c6+75RjEy/Bm0LP4ws3ryXNIo9eDevv4Ok9L5PM5k/WQgIP7e1jz9nkkm/SbqEP4eOrz41xyLAGaWTvl92hT2TJ5o/bso4P9e5nL/5GQM/zVQGPwigQz+WC5M/v2uPv7bEsj4M6KE/vHpcv0wm1T1rrCg+zL6PvxEwET/4nmy+mVsYQBWKgr44QKy/eb/kPqklqb6Rg6W/s2K+v3QUqb79dD4/j+nMPHZg+714mrE/revTvqjMjj8OFFE/n/H5v81UBj8Jgae/E2EXPhw85b6vrxA/pR2bPxO86L/XyT0/wIhCvwNlHr/6Lgw/CYBavYSJ6r5Tf8C/GIdRv5i4UT9BfTA/fuifP3wHL793zUQ/PFsmPuiACsCzNdU+h/Wpvg4Nkz8vfVA/17mcv/kZAz/NVAY/CKBDPyevkD4vlb+/3FOXPRa5ED/bXrG+RVL+vkZcIL+oeVW/ukANPyuAvL0cmIK+eSG6v+bDfz5XHk8/XM9rP5xKoD/+MJE+adzJPzND6DzCXcq/AjYkP5PGiT42MLM/YSsJP9e5nL/5GQM/zVQGPwigQz+6+Nk+mDHkvke8ED9tRgY/NSqRPxfsHz81LVo9dvVZv1GJCz9pYLO89eBkP+KZBj+3Si2+5CfHv7lN0D73rqG/FiUKP7qKgL9t8Jc+Hd5tP8BWFL8U9/489dnPPWhPSb8OFFE/+RkDP81UBj8Jgae/FM88PxgaQ79xzgA/YPXcP+1jor51zV0/qo3Bv1OqCb/0QAs/Ey2UvCUUR784Bew+EeztvRSquT+2qW4/d6HvvYGrEL8F1SRAAQoav5jNCsDULSa+vJqev7ZuGUC66ck+17mcv/kZAz8u7/O/CKBDPyRLMLwi2Xq/hHvXPnnY1T8Nwdq/pZ9gvkUPmL/UP/2+AyILP8hmkb2o7gu/UygfwIfvWb/jDCw/w9h1P5Lj5T//ase/R00OP0J18D59aA/AIIgZP80Zhr30VKI/XKuAPw4UUT/5GQM/Lu/zvwmBp7+RoBg/1l+Jv9v6vz4njpw/4SS/vy73Hj3V3iG+Meluv1MbDT9dILq9XuAjPyKy5r/L4Ym/TKlSP71ryD3iACs/Bel5v96D5j6uVho/KlSBv6pt6D0M9UU//s2bP0JXAkAOFFE/+RkDP81UBj8Jgae/jRSHP9cox7+dW5A8ZKO2Py4Fpr/Jnvo+Hb+oPvsTWL9lrQI/+7XNvn5k5T8GNc6/PKkuv28Piz++7Ny+VGJIP0iZyb9usTs/nrMjP4hYnb9LLcM9rA6bvqDDkT880UQ/DhRRP/kZAz/NVAY/CYGnv9LtCz84Tm896BkIP6C2lj+Jc0A/N4izP5jyab/+0Eu/Owj0PoHzIMB6tBi/+HEmP78ufT599nc90/9tP1SIKL0RXZs/R5yKvia5PL6c+EW/XgkZv+esWMAsG8k/pkdwvte5nL/5GQM/Lu/zvwigQz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAAAAAADlzoW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAClPqPQAAAABOWtm/AAAAAN+CxTsAAAAA7gn0PwAAAADJKdK9AAAAAH5g7T8AAAAAB+UWvQAAAADmNem/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1DBctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPltET4AAAAAooL+vwAAAABicbS9AAAAAL+c6T8AAAAADvy2PQAAAABdl/w/AAAAAKxF070AAAAAJLv+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9Bw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8T5W7AAAAAP44+78AAAAA+ue6vQAAAAD3z/g/AAAAAIwHjL0AAAAABE3oPwAAAADtiMG9AAAAAIjL/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ1UK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxIvbvQAAAAAcrOK/AAAAACOi+zwAAAAAzqAAQAAAAAAJJLO9AAAAAJFd9D8AAAAAYNSpPQAAAACIEPG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA19ddtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEIj4j0AAAAAD2TyvwAAAABFrrs9AAAAAO8N7D8AAAAAMXLWvAAAAAD+Auo/AAAAABIpg7sAAAAA+CEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLFqrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmGZc6AAAAANKA3b8AAAAAgK04PAAAAACe8e8/AAAAALY8dD0AAAAA7yzpPwAAAABkUPQ9AAAAAOQn9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1maM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnYlQvAAAAAA8VfS/AAAAAAqysbwAAAAAvsr/PwAAAAAst9g9AAAAALje9j8AAAAAF2/6vQAAAABPzdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0x4jNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPXkGToAAAAAueztvwAAAADr6HM9AAAAALTt2j8AAAAAZfLmPAAAAADJ9N0/AAAAAEmMg7wAAAAAudTuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhcOLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAXcbO8AAAAAJ614b8AAAAAUnGxvQAAAABdB+I/AAAAAIQ22TwAAAAAlUv3PwAAAADDMqU9AAAAAKTQ478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSdFq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyv2/PQAAAADUJ+C/AAAAAAyXEr4AAAAAGt/8PwAAAAD7v3Y9AAAAALsQ4D8AAAAACoDnvAAAAAADFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJukNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEXSzL0AAAAAvTr1vwAAAACjqwM+AAAAANWu2j8AAAAA+x0YPAAAAADQuOQ/AAAAANgAFz0AAAAAMu7ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFQTOjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB6kgY+AAAAAPLC3L8AAAAAS1sEPQAAAAAM0to/AAAAAJYn9T0AAAAAMFvxPwAAAADPu8e9AAAAAFRb678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0cK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALzzcvQAAAACiaOe/AAAAAIew470AAAAAscflPwAAAAAdcO+8AAAAAKmbAEAAAAAAm0QuvAAAAAArWui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALhOPtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDjLDT0AAAAAbd7YvwAAAADxlcs8AAAAAL3B7j8AAAAAC7fDvQAAAADRieY/AAAAAFElzL0AAAAAMtH/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJEhjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBH68S9AAAAAKAr8L8AAAAA90iGPQAAAADXC+g/AAAAAEF+5L0AAAAAr7TvPwAAAAC70fk7AAAAACiw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA+u2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdGkLPgAAAAAdPua/AAAAANX3270AAAAA0wT6PwAAAADZe5C9AAAAAHFt2z8AAAAASCzHuwAAAADLTdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ6uIdQwbl2MAWyUTegDjAF0lEdAme9BEBsAN3V9lChoBkdAnpeAeA/cFmgHTegDaAhHQJnwZrAP/aR1fZQoaAZHQKBIwNjslcBoB03oA2gIR0CZ8TGi5/b1dX2UKGgGR0Cf8uHpr1ujaAdN6ANoCEdAmfKG3OObRXV9lChoBkdAoIiJ9qk/KWgHTegDaAhHQJn19b4agmJ1fZQoaAZHQKDAFLeQ+2VoB03oA2gIR0CaAuhESdvsdX2UKGgGR0CgorbJfYz0aAdN6ANoCEdAmgQxnjABUHV9lChoBkdAoKiNIuoP1GgHTegDaAhHQJoPCNGViWp1fZQoaAZHQKB4CU6gdwNoB03oA2gIR0CaD/AVwgkkdX2UKGgGR0ChG1TbvgFYaAdN6ANoCEdAmhJ+avzOHHV9lChoBkdAobZwgieNDWgHTegDaAhHQJoVRsBQvYh1fZQoaAZHQKHwhQpnYg9oB03oA2gIR0CaFbTzd1uBdX2UKGgGR0ChWDtwBHTaaAdN6ANoCEdAmha9nf2saXV9lChoBkdAoRS6fL9uP2gHTegDaAhHQJoY5MrVe8h1fZQoaAZHQKFfNcvduYRoB03oA2gIR0CaGxXZ5AyEdX2UKGgGR0Cgu6K33HrAaAdN6ANoCEdAmhuRjJ+2E3V9lChoBkdAlkSgBo24u2gHTegDaAhHQJopP/giu+11fZQoaAZHQJ8xQjLSuyNoB03oA2gIR0CaKm/wiJO4dX2UKGgGR0CYtYXoTwlTaAdN6ANoCEdAmitDIvJzUHV9lChoBkdAn4oUug6EJ2gHTegDaAhHQJostp35eqt1fZQoaAZHQJvQNTyauwJoB03oA2gIR0CaMIBVuJk5dX2UKGgGR0CgzydweeWfaAdN6ANoCEdAmj0ISlFc6nV9lChoBkdAngnnPNVzZGgHTegDaAhHQJo+NGI9C/p1fZQoaAZHQJurKLLpzLhoB03oA2gIR0CaRwmukk8idX2UKGgGR0CdibHGS6lMaAdN6ANoCEdAmkgadH2AXnV9lChoBkdAnZ4eUt7KJWgHTegDaAhHQJpKuHTI/7l1fZQoaAZHQJsafWZqmCRoB03oA2gIR0CaTXfra/RFdX2UKGgGR0CdNA2B8QZoaAdN6ANoCEdAmk3qt9x6wHV9lChoBkdAnx89Net0WGgHTegDaAhHQJpPASPEKmd1fZQoaAZHQJ6fsv38GcFoB03oA2gIR0CaUN2/zreJdX2UKGgGR0CVVJ+wkgOjaAdN6ANoCEdAmlLsMd92HXV9lChoBkdAnlUIvN/vv2gHTegDaAhHQJpTV0dRzil1fZQoaAZHQJSXP4Glhw5oB03oA2gIR0CaX0dfb9IgdX2UKGgGR0ChgnOd5IH1aAdN6ANoCEdAmmCGwJPZZnV9lChoBkdAoak8zyjHn2gHTegDaAhHQJphT1TR6Wx1fZQoaAZHQJ56vYFqzqtoB03oA2gIR0CaYpk8A7xNdX2UKGgGR0CdMid07r9maAdN6ANoCEdAmmX7+PzWgHV9lChoBkdAoUeUFlkH2WgHTegDaAhHQJpxGl+EytV1fZQoaAZHQJ7R2Myad+ZoB03oA2gIR0CachQgcLjQdX2UKGgGR0CZ7QSzPa+OaAdN6ANoCEdAmnvbEHdGiHV9lChoBkdAoVh544ZMtmgHTegDaAhHQJp8pZZB9kV1fZQoaAZHQKBi3XarWAhoB03oA2gIR0CafyH1e0HAdX2UKGgGR0Ce0YjIJZ4faAdN6ANoCEdAmoH6Z+hGpnV9lChoBkdAnIYEWM0gsGgHTegDaAhHQJqCcKw6hg51fZQoaAZHQKDWEafBeoloB03oA2gIR0Cag37YTTOPdX2UKGgGR0Cf0CzdUKiPaAdN6ANoCEdAmoWM6/7BPHV9lChoBkdAn/wMOby6MGgHTegDaAhHQJqHgAEMb3p1fZQoaAZHQKA1/XkHUttoB03oA2gIR0Cah/lyzXz2dX2UKGgGR0Ce/A89Oh0yaAdN6ANoCEdAmpToTTOPenV9lChoBkdAndgq1G9YfWgHTegDaAhHQJqV+zw+dLB1fZQoaAZHQJ47BT6zmfZoB03oA2gIR0CalrXOnl4kdX2UKGgGR0CeZXJDVpbmaAdN6ANoCEdAmpgARPGhmHV9lChoBkdAnN5EqlP8AWgHTegDaAhHQJqbY8FINEx1fZQoaAZHQKAQaLDye7NoB03oA2gIR0CapuziS7oTdX2UKGgGR0CfdZ3TNMXaaAdN6ANoCEdAmqgFt0mtyXV9lChoBkdAnnLjr7fpEGgHTegDaAhHQJqwtDst03h1fZQoaAZHQKCggahHskZoB03oA2gIR0CasWBOYYzjdX2UKGgGR0CevlywfQruaAdN6ANoCEdAmrOohpxm03V9lChoBkdAnHIMDwH7g2gHTegDaAhHQJq147MgU111fZQoaAZHQJ8mnEIgNgBoB03oA2gIR0CatjtdAxBWdX2UKGgGR0Cc97slb/wRaAdN6ANoCEdAmrcfGQ0XQHV9lChoBkdAoB9raufVZ2gHTegDaAhHQJq5Lp8neBR1fZQoaAZHQKBEXCHARChoB03oA2gIR0Cau1I91U2ldX2UKGgGR0CgZPGmUGFBaAdN6ANoCEdAmrvDrZ8KHHV9lChoBkdAn0Cj9fkWAWgHTegDaAhHQJrHqr0aqCJ1fZQoaAZHQKF3AsLfDUFoB03oA2gIR0CayQaMaS9vdX2UKGgGR0CfTv/WDpTuaAdN6ANoCEdAmsnK0dBBzHV9lChoBkdAoOVamwaBJGgHTegDaAhHQJrLByBClad1fZQoaAZHQKAXyYR/ViFoB03oA2gIR0CazirjYI0JdX2UKGgGR0CfYhc1O0swaAdN6ANoCEdAmtlHoouwo3V9lChoBkdAoSjM8s+V1WgHTegDaAhHQJraSqdYnv51fZQoaAZHQKD3FEcbR4RoB03oA2gIR0Ca4//io86ndX2UKGgGR0ChPTykTHsDaAdN6ANoCEdAmuTD+NtIkXV9lChoBkdAoAee38XN1WgHTegDaAhHQJrnHK8tf5V1fZQoaAZHQKDSElBQemxoB03oA2gIR0Ca6c9n9NvgdX2UKGgGR0Cg2hP114gSaAdN6ANoCEdAmuo38n/kvXV9lChoBkdAoXi4rc0tRWgHTegDaAhHQJrrRdVvMr51fZQoaAZHQKIa0HC4z8BoB03oA2gIR0Ca7aOxSpBHdX2UKGgGR0CfmveeWfK7aAdN6ANoCEdAmu+0RradtnV9lChoBkdAofosBsANomgHTegDaAhHQJrwLHS4OMF1fZQoaAZHQKAl4ATZg5RoB03oA2gIR0Ca/H9tdiUgdX2UKGgGR0CenmKpDNQkaAdN6ANoCEdAmv2uCkGiYnV9lChoBkdAnv78lw97nmgHTegDaAhHQJr+Yg2ZRbd1fZQoaAZHQJ9Yh/XoTwloB03oA2gIR0Ca/63gUDdQdX2UKGgGR0CgMR0hvBJqaAdN6ANoCEdAmwK44ACGOHV9lChoBkdAoEW3Vf/m1mgHTegDaAhHQJsOphCtzS11fZQoaAZHQKD7Rt/FzdVoB03oA2gIR0CbD8xYq5LAdX2UKGgGR0CgcfuRDCxeaAdN6ANoCEdAmxkSqU/wAnV9lChoBkdAoCaqS1Vo6GgHTegDaAhHQJsZwhfShJ11fZQoaAZHQJ79QifQKKJoB03oA2gIR0CbG+N4qwyJdX2UKGgGR0Chm9lq8DjjaAdN6ANoCEdAmx6Sr5qM33V9lChoBkdAoWRDUVi4KGgHTegDaAhHQJsfB9Sde6Z1fZQoaAZHQKAu4cCHRCxoB03oA2gIR0CbICZydWhidX2UKGgGR0CgrMajN6gNaAdN6ANoCEdAmyJAkgOjI3V9lChoBkdAoSvke4kNWmgHTegDaAhHQJskWR3eN1h1fZQoaAZHQKFOpJ+2E01oB03oA2gIR0CbJNN1yNn5dX2UKGgGR0Cg4L/IS13MaAdN6ANoCEdAmzDYc3l0YHV9lChoBkdAoRphcX3xnWgHTegDaAhHQJsyEpvxYq51fZQoaAZHQJcdlRDTjNpoB03oA2gIR0CbMteWv8qGdX2UKGgGR0ChBYvkq+ajaAdN6ANoCEdAmzQTfBN21XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13cc1ad9432f72dd0515092d20d8a34c29894b517f3fcda924c9747b8ce17620
|
3 |
+
size 1057560
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2023.046305999806, "std_reward": 313.3426895541724, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T05:43:52.829209"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:322fe17446a78627733f442e141f374a709c9a2d86c5adc7e5ffe759fccc2033
|
3 |
+
size 2136
|