jwright94 commited on
Commit
16cbce4
·
1 Parent(s): 4f04859

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2023.05 +/- 313.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5a090c03375f25992a374439694317083b95cde253d72077cea49401c75c7c2
3
+ size 132900
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f768408a8c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f768408a950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f768408a9e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f768408aa70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f768408ab00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f768408ab90>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f768408ac20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f768408acb0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f768408ad40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f768408add0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f768408ae60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f768408aef0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f76844e9b00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 16,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675228208155557650,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAGoOHD8bFss8b/sJP966uD9Oj/y/pgcXvwojlT0mLVi/QrgWPw9Q377WfHs/tkGsv/7BnL9fwkC+/tQOvnQ1Bz84n9m/D6c3voK0Oj/hNqy9OgS2PniiSz8GVHI+8nm/Pw4UUT/5GQM/zVQGPwmBp7/oEQ8/h98cv0lrCj+zd6Y/xel9vTjEYj7XTYi+1LUxv3UE+T69Pqg/5MkoPw0jhD5Pmno81gyEv3Ue3T5+DnS//fuxvp6eNL8XPjQ+R6iIP1KKFL/jCO88+fZyP1fYy74OFFE/+RkDP81UBj8IoEM/d9pAPp27yL8luLE7k33XP9zHx7+cPFM/f0yEvgG98b6r0PU+2QyqPlv1g7zwKYa/A4e4vin1iT+6wLY++YSgPwNLtr9dLFg/Y1HAPmuEuL9mHUU9mvUevzEtJD8sYlM/17mcv/kZAz/NVAY/CKBDP6YVAD/yhRu/ebAKP+Ohwj/hZJY/vGqSP88vUr+YoA+/2BNBvgTKaj+4qZs+UVxNP+T7VT8hWRu+E8g/P59sTL9Rki0/xxqEv59YC7+PzJk/w1UUvwt8kj09rX4/qYlQv9e5nL/5GQM/zVQGPwmBp78cGm4/eXJhv8PR7D7V6zw+mS4hP8hyB79J4oK//kdbv7dICz8es6K8Lsg0vzNP5z72pIg/v8i+Pnb4bD9r9g894PmUP5Ar1r1qHX+/Rgupv8REFL/GTL88BGs5QGFHbD7XuZy/+RkDP81UBj8IoEM/HsbevBth5b03rw8/cGDmPqxFrj8iaqS/J8zYPn3g2L5r3g0/Q4/wvW5vID9473u/kHuLv7LYjD/Jx4U+UK4ZPrtf4b4xxi8/8tsoPwM73D4P2Q+/aC8PPxC/Qb0dML0+DhRRP5/x+b/NVAY/CKBDP7Yn+D4jGFq/tlHyPpAJyz9w/pC/gwg1P5c6+75RjEy/Bm0LP4ws3ryXNIo9eDevv4Ok9L5PM5k/WQgIP7e1jz9nkkm/SbqEP4eOrz41xyLAGaWTvl92hT2TJ5o/bso4P9e5nL/5GQM/zVQGPwigQz+WC5M/v2uPv7bEsj4M6KE/vHpcv0wm1T1rrCg+zL6PvxEwET/4nmy+mVsYQBWKgr44QKy/eb/kPqklqb6Rg6W/s2K+v3QUqb79dD4/j+nMPHZg+714mrE/revTvqjMjj8OFFE/n/H5v81UBj8Jgae/E2EXPhw85b6vrxA/pR2bPxO86L/XyT0/wIhCvwNlHr/6Lgw/CYBavYSJ6r5Tf8C/GIdRv5i4UT9BfTA/fuifP3wHL793zUQ/PFsmPuiACsCzNdU+h/Wpvg4Nkz8vfVA/17mcv/kZAz/NVAY/CKBDPyevkD4vlb+/3FOXPRa5ED/bXrG+RVL+vkZcIL+oeVW/ukANPyuAvL0cmIK+eSG6v+bDfz5XHk8/XM9rP5xKoD/+MJE+adzJPzND6DzCXcq/AjYkP5PGiT42MLM/YSsJP9e5nL/5GQM/zVQGPwigQz+6+Nk+mDHkvke8ED9tRgY/NSqRPxfsHz81LVo9dvVZv1GJCz9pYLO89eBkP+KZBj+3Si2+5CfHv7lN0D73rqG/FiUKP7qKgL9t8Jc+Hd5tP8BWFL8U9/489dnPPWhPSb8OFFE/+RkDP81UBj8Jgae/FM88PxgaQ79xzgA/YPXcP+1jor51zV0/qo3Bv1OqCb/0QAs/Ey2UvCUUR784Bew+EeztvRSquT+2qW4/d6HvvYGrEL8F1SRAAQoav5jNCsDULSa+vJqev7ZuGUC66ck+17mcv/kZAz8u7/O/CKBDPyRLMLwi2Xq/hHvXPnnY1T8Nwdq/pZ9gvkUPmL/UP/2+AyILP8hmkb2o7gu/UygfwIfvWb/jDCw/w9h1P5Lj5T//ase/R00OP0J18D59aA/AIIgZP80Zhr30VKI/XKuAPw4UUT/5GQM/Lu/zvwmBp7+RoBg/1l+Jv9v6vz4njpw/4SS/vy73Hj3V3iG+Meluv1MbDT9dILq9XuAjPyKy5r/L4Ym/TKlSP71ryD3iACs/Bel5v96D5j6uVho/KlSBv6pt6D0M9UU//s2bP0JXAkAOFFE/+RkDP81UBj8Jgae/jRSHP9cox7+dW5A8ZKO2Py4Fpr/Jnvo+Hb+oPvsTWL9lrQI/+7XNvn5k5T8GNc6/PKkuv28Piz++7Ny+VGJIP0iZyb9usTs/nrMjP4hYnb9LLcM9rA6bvqDDkT880UQ/DhRRP/kZAz/NVAY/CYGnv9LtCz84Tm896BkIP6C2lj+Jc0A/N4izP5jyab/+0Eu/Owj0PoHzIMB6tBi/+HEmP78ufT599nc90/9tP1SIKL0RXZs/R5yKvia5PL6c+EW/XgkZv+esWMAsG8k/pkdwvte5nL/5GQM/Lu/zvwigQz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAAAAAADlzoW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAClPqPQAAAABOWtm/AAAAAN+CxTsAAAAA7gn0PwAAAADJKdK9AAAAAH5g7T8AAAAAB+UWvQAAAADmNem/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1DBctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPltET4AAAAAooL+vwAAAABicbS9AAAAAL+c6T8AAAAADvy2PQAAAABdl/w/AAAAAKxF070AAAAAJLv+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9Bw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8T5W7AAAAAP44+78AAAAA+ue6vQAAAAD3z/g/AAAAAIwHjL0AAAAABE3oPwAAAADtiMG9AAAAAIjL/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ1UK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxIvbvQAAAAAcrOK/AAAAACOi+zwAAAAAzqAAQAAAAAAJJLO9AAAAAJFd9D8AAAAAYNSpPQAAAACIEPG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA19ddtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEIj4j0AAAAAD2TyvwAAAABFrrs9AAAAAO8N7D8AAAAAMXLWvAAAAAD+Auo/AAAAABIpg7sAAAAA+CEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLFqrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmGZc6AAAAANKA3b8AAAAAgK04PAAAAACe8e8/AAAAALY8dD0AAAAA7yzpPwAAAABkUPQ9AAAAAOQn9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1maM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnYlQvAAAAAA8VfS/AAAAAAqysbwAAAAAvsr/PwAAAAAst9g9AAAAALje9j8AAAAAF2/6vQAAAABPzdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0x4jNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPXkGToAAAAAueztvwAAAADr6HM9AAAAALTt2j8AAAAAZfLmPAAAAADJ9N0/AAAAAEmMg7wAAAAAudTuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhcOLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAXcbO8AAAAAJ614b8AAAAAUnGxvQAAAABdB+I/AAAAAIQ22TwAAAAAlUv3PwAAAADDMqU9AAAAAKTQ478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSdFq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyv2/PQAAAADUJ+C/AAAAAAyXEr4AAAAAGt/8PwAAAAD7v3Y9AAAAALsQ4D8AAAAACoDnvAAAAAADFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJukNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEXSzL0AAAAAvTr1vwAAAACjqwM+AAAAANWu2j8AAAAA+x0YPAAAAADQuOQ/AAAAANgAFz0AAAAAMu7ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFQTOjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB6kgY+AAAAAPLC3L8AAAAAS1sEPQAAAAAM0to/AAAAAJYn9T0AAAAAMFvxPwAAAADPu8e9AAAAAFRb678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0cK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALzzcvQAAAACiaOe/AAAAAIew470AAAAAscflPwAAAAAdcO+8AAAAAKmbAEAAAAAAm0QuvAAAAAArWui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALhOPtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDjLDT0AAAAAbd7YvwAAAADxlcs8AAAAAL3B7j8AAAAAC7fDvQAAAADRieY/AAAAAFElzL0AAAAAMtH/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJEhjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBH68S9AAAAAKAr8L8AAAAA90iGPQAAAADXC+g/AAAAAEF+5L0AAAAAr7TvPwAAAAC70fk7AAAAACiw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA+u2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdGkLPgAAAAAdPua/AAAAANX3270AAAAA0wT6PwAAAADZe5C9AAAAAHFt2z8AAAAASCzHuwAAAADLTdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ6uIdQwbl2MAWyUTegDjAF0lEdAme9BEBsAN3V9lChoBkdAnpeAeA/cFmgHTegDaAhHQJnwZrAP/aR1fZQoaAZHQKBIwNjslcBoB03oA2gIR0CZ8TGi5/b1dX2UKGgGR0Cf8uHpr1ujaAdN6ANoCEdAmfKG3OObRXV9lChoBkdAoIiJ9qk/KWgHTegDaAhHQJn19b4agmJ1fZQoaAZHQKDAFLeQ+2VoB03oA2gIR0CaAuhESdvsdX2UKGgGR0CgorbJfYz0aAdN6ANoCEdAmgQxnjABUHV9lChoBkdAoKiNIuoP1GgHTegDaAhHQJoPCNGViWp1fZQoaAZHQKB4CU6gdwNoB03oA2gIR0CaD/AVwgkkdX2UKGgGR0ChG1TbvgFYaAdN6ANoCEdAmhJ+avzOHHV9lChoBkdAobZwgieNDWgHTegDaAhHQJoVRsBQvYh1fZQoaAZHQKHwhQpnYg9oB03oA2gIR0CaFbTzd1uBdX2UKGgGR0ChWDtwBHTaaAdN6ANoCEdAmha9nf2saXV9lChoBkdAoRS6fL9uP2gHTegDaAhHQJoY5MrVe8h1fZQoaAZHQKFfNcvduYRoB03oA2gIR0CaGxXZ5AyEdX2UKGgGR0Cgu6K33HrAaAdN6ANoCEdAmhuRjJ+2E3V9lChoBkdAlkSgBo24u2gHTegDaAhHQJopP/giu+11fZQoaAZHQJ8xQjLSuyNoB03oA2gIR0CaKm/wiJO4dX2UKGgGR0CYtYXoTwlTaAdN6ANoCEdAmitDIvJzUHV9lChoBkdAn4oUug6EJ2gHTegDaAhHQJostp35eqt1fZQoaAZHQJvQNTyauwJoB03oA2gIR0CaMIBVuJk5dX2UKGgGR0CgzydweeWfaAdN6ANoCEdAmj0ISlFc6nV9lChoBkdAngnnPNVzZGgHTegDaAhHQJo+NGI9C/p1fZQoaAZHQJurKLLpzLhoB03oA2gIR0CaRwmukk8idX2UKGgGR0CdibHGS6lMaAdN6ANoCEdAmkgadH2AXnV9lChoBkdAnZ4eUt7KJWgHTegDaAhHQJpKuHTI/7l1fZQoaAZHQJsafWZqmCRoB03oA2gIR0CaTXfra/RFdX2UKGgGR0CdNA2B8QZoaAdN6ANoCEdAmk3qt9x6wHV9lChoBkdAnx89Net0WGgHTegDaAhHQJpPASPEKmd1fZQoaAZHQJ6fsv38GcFoB03oA2gIR0CaUN2/zreJdX2UKGgGR0CVVJ+wkgOjaAdN6ANoCEdAmlLsMd92HXV9lChoBkdAnlUIvN/vv2gHTegDaAhHQJpTV0dRzil1fZQoaAZHQJSXP4Glhw5oB03oA2gIR0CaX0dfb9IgdX2UKGgGR0ChgnOd5IH1aAdN6ANoCEdAmmCGwJPZZnV9lChoBkdAoak8zyjHn2gHTegDaAhHQJphT1TR6Wx1fZQoaAZHQJ56vYFqzqtoB03oA2gIR0CaYpk8A7xNdX2UKGgGR0CdMid07r9maAdN6ANoCEdAmmX7+PzWgHV9lChoBkdAoUeUFlkH2WgHTegDaAhHQJpxGl+EytV1fZQoaAZHQJ7R2Myad+ZoB03oA2gIR0CachQgcLjQdX2UKGgGR0CZ7QSzPa+OaAdN6ANoCEdAmnvbEHdGiHV9lChoBkdAoVh544ZMtmgHTegDaAhHQJp8pZZB9kV1fZQoaAZHQKBi3XarWAhoB03oA2gIR0CafyH1e0HAdX2UKGgGR0Ce0YjIJZ4faAdN6ANoCEdAmoH6Z+hGpnV9lChoBkdAnIYEWM0gsGgHTegDaAhHQJqCcKw6hg51fZQoaAZHQKDWEafBeoloB03oA2gIR0Cag37YTTOPdX2UKGgGR0Cf0CzdUKiPaAdN6ANoCEdAmoWM6/7BPHV9lChoBkdAn/wMOby6MGgHTegDaAhHQJqHgAEMb3p1fZQoaAZHQKA1/XkHUttoB03oA2gIR0Cah/lyzXz2dX2UKGgGR0Ce/A89Oh0yaAdN6ANoCEdAmpToTTOPenV9lChoBkdAndgq1G9YfWgHTegDaAhHQJqV+zw+dLB1fZQoaAZHQJ47BT6zmfZoB03oA2gIR0CalrXOnl4kdX2UKGgGR0CeZXJDVpbmaAdN6ANoCEdAmpgARPGhmHV9lChoBkdAnN5EqlP8AWgHTegDaAhHQJqbY8FINEx1fZQoaAZHQKAQaLDye7NoB03oA2gIR0CapuziS7oTdX2UKGgGR0CfdZ3TNMXaaAdN6ANoCEdAmqgFt0mtyXV9lChoBkdAnnLjr7fpEGgHTegDaAhHQJqwtDst03h1fZQoaAZHQKCggahHskZoB03oA2gIR0CasWBOYYzjdX2UKGgGR0CevlywfQruaAdN6ANoCEdAmrOohpxm03V9lChoBkdAnHIMDwH7g2gHTegDaAhHQJq147MgU111fZQoaAZHQJ8mnEIgNgBoB03oA2gIR0CatjtdAxBWdX2UKGgGR0Cc97slb/wRaAdN6ANoCEdAmrcfGQ0XQHV9lChoBkdAoB9raufVZ2gHTegDaAhHQJq5Lp8neBR1fZQoaAZHQKBEXCHARChoB03oA2gIR0Cau1I91U2ldX2UKGgGR0CgZPGmUGFBaAdN6ANoCEdAmrvDrZ8KHHV9lChoBkdAn0Cj9fkWAWgHTegDaAhHQJrHqr0aqCJ1fZQoaAZHQKF3AsLfDUFoB03oA2gIR0CayQaMaS9vdX2UKGgGR0CfTv/WDpTuaAdN6ANoCEdAmsnK0dBBzHV9lChoBkdAoOVamwaBJGgHTegDaAhHQJrLByBClad1fZQoaAZHQKAXyYR/ViFoB03oA2gIR0CazirjYI0JdX2UKGgGR0CfYhc1O0swaAdN6ANoCEdAmtlHoouwo3V9lChoBkdAoSjM8s+V1WgHTegDaAhHQJraSqdYnv51fZQoaAZHQKD3FEcbR4RoB03oA2gIR0Ca4//io86ndX2UKGgGR0ChPTykTHsDaAdN6ANoCEdAmuTD+NtIkXV9lChoBkdAoAee38XN1WgHTegDaAhHQJrnHK8tf5V1fZQoaAZHQKDSElBQemxoB03oA2gIR0Ca6c9n9NvgdX2UKGgGR0Cg2hP114gSaAdN6ANoCEdAmuo38n/kvXV9lChoBkdAoXi4rc0tRWgHTegDaAhHQJrrRdVvMr51fZQoaAZHQKIa0HC4z8BoB03oA2gIR0Ca7aOxSpBHdX2UKGgGR0CfmveeWfK7aAdN6ANoCEdAmu+0RradtnV9lChoBkdAofosBsANomgHTegDaAhHQJrwLHS4OMF1fZQoaAZHQKAl4ATZg5RoB03oA2gIR0Ca/H9tdiUgdX2UKGgGR0CenmKpDNQkaAdN6ANoCEdAmv2uCkGiYnV9lChoBkdAnv78lw97nmgHTegDaAhHQJr+Yg2ZRbd1fZQoaAZHQJ9Yh/XoTwloB03oA2gIR0Ca/63gUDdQdX2UKGgGR0CgMR0hvBJqaAdN6ANoCEdAmwK44ACGOHV9lChoBkdAoEW3Vf/m1mgHTegDaAhHQJsOphCtzS11fZQoaAZHQKD7Rt/FzdVoB03oA2gIR0CbD8xYq5LAdX2UKGgGR0CgcfuRDCxeaAdN6ANoCEdAmxkSqU/wAnV9lChoBkdAoCaqS1Vo6GgHTegDaAhHQJsZwhfShJ11fZQoaAZHQJ79QifQKKJoB03oA2gIR0CbG+N4qwyJdX2UKGgGR0Chm9lq8DjjaAdN6ANoCEdAmx6Sr5qM33V9lChoBkdAoWRDUVi4KGgHTegDaAhHQJsfB9Sde6Z1fZQoaAZHQKAu4cCHRCxoB03oA2gIR0CbICZydWhidX2UKGgGR0CgrMajN6gNaAdN6ANoCEdAmyJAkgOjI3V9lChoBkdAoSvke4kNWmgHTegDaAhHQJskWR3eN1h1fZQoaAZHQKFOpJ+2E01oB03oA2gIR0CbJNN1yNn5dX2UKGgGR0Cg4L/IS13MaAdN6ANoCEdAmzDYc3l0YHV9lChoBkdAoRphcX3xnWgHTegDaAhHQJsyEpvxYq51fZQoaAZHQJcdlRDTjNpoB03oA2gIR0CbMteWv8qGdX2UKGgGR0ChBYvkq+ajaAdN6ANoCEdAmzQTfBN21XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 15625,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ea67dea680f047be2b6d477f824717e10ee8ea82d5754016f015f88a938fd6
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:034cbebb8b82dad7def829e68da221bcc6b2ebf60551e6b04ed075b2d6ebe9c1
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022
2
+ - Python: 3.10.8
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f768408a8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f768408a950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f768408a9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f768408aa70>", "_build": "<function ActorCriticPolicy._build at 0x7f768408ab00>", "forward": "<function ActorCriticPolicy.forward at 0x7f768408ab90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f768408ac20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f768408acb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f768408ad40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f768408add0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f768408ae60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f768408aef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f76844e9b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675228208155557650, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAGoOHD8bFss8b/sJP966uD9Oj/y/pgcXvwojlT0mLVi/QrgWPw9Q377WfHs/tkGsv/7BnL9fwkC+/tQOvnQ1Bz84n9m/D6c3voK0Oj/hNqy9OgS2PniiSz8GVHI+8nm/Pw4UUT/5GQM/zVQGPwmBp7/oEQ8/h98cv0lrCj+zd6Y/xel9vTjEYj7XTYi+1LUxv3UE+T69Pqg/5MkoPw0jhD5Pmno81gyEv3Ue3T5+DnS//fuxvp6eNL8XPjQ+R6iIP1KKFL/jCO88+fZyP1fYy74OFFE/+RkDP81UBj8IoEM/d9pAPp27yL8luLE7k33XP9zHx7+cPFM/f0yEvgG98b6r0PU+2QyqPlv1g7zwKYa/A4e4vin1iT+6wLY++YSgPwNLtr9dLFg/Y1HAPmuEuL9mHUU9mvUevzEtJD8sYlM/17mcv/kZAz/NVAY/CKBDP6YVAD/yhRu/ebAKP+Ohwj/hZJY/vGqSP88vUr+YoA+/2BNBvgTKaj+4qZs+UVxNP+T7VT8hWRu+E8g/P59sTL9Rki0/xxqEv59YC7+PzJk/w1UUvwt8kj09rX4/qYlQv9e5nL/5GQM/zVQGPwmBp78cGm4/eXJhv8PR7D7V6zw+mS4hP8hyB79J4oK//kdbv7dICz8es6K8Lsg0vzNP5z72pIg/v8i+Pnb4bD9r9g894PmUP5Ar1r1qHX+/Rgupv8REFL/GTL88BGs5QGFHbD7XuZy/+RkDP81UBj8IoEM/HsbevBth5b03rw8/cGDmPqxFrj8iaqS/J8zYPn3g2L5r3g0/Q4/wvW5vID9473u/kHuLv7LYjD/Jx4U+UK4ZPrtf4b4xxi8/8tsoPwM73D4P2Q+/aC8PPxC/Qb0dML0+DhRRP5/x+b/NVAY/CKBDP7Yn+D4jGFq/tlHyPpAJyz9w/pC/gwg1P5c6+75RjEy/Bm0LP4ws3ryXNIo9eDevv4Ok9L5PM5k/WQgIP7e1jz9nkkm/SbqEP4eOrz41xyLAGaWTvl92hT2TJ5o/bso4P9e5nL/5GQM/zVQGPwigQz+WC5M/v2uPv7bEsj4M6KE/vHpcv0wm1T1rrCg+zL6PvxEwET/4nmy+mVsYQBWKgr44QKy/eb/kPqklqb6Rg6W/s2K+v3QUqb79dD4/j+nMPHZg+714mrE/revTvqjMjj8OFFE/n/H5v81UBj8Jgae/E2EXPhw85b6vrxA/pR2bPxO86L/XyT0/wIhCvwNlHr/6Lgw/CYBavYSJ6r5Tf8C/GIdRv5i4UT9BfTA/fuifP3wHL793zUQ/PFsmPuiACsCzNdU+h/Wpvg4Nkz8vfVA/17mcv/kZAz/NVAY/CKBDPyevkD4vlb+/3FOXPRa5ED/bXrG+RVL+vkZcIL+oeVW/ukANPyuAvL0cmIK+eSG6v+bDfz5XHk8/XM9rP5xKoD/+MJE+adzJPzND6DzCXcq/AjYkP5PGiT42MLM/YSsJP9e5nL/5GQM/zVQGPwigQz+6+Nk+mDHkvke8ED9tRgY/NSqRPxfsHz81LVo9dvVZv1GJCz9pYLO89eBkP+KZBj+3Si2+5CfHv7lN0D73rqG/FiUKP7qKgL9t8Jc+Hd5tP8BWFL8U9/489dnPPWhPSb8OFFE/+RkDP81UBj8Jgae/FM88PxgaQ79xzgA/YPXcP+1jor51zV0/qo3Bv1OqCb/0QAs/Ey2UvCUUR784Bew+EeztvRSquT+2qW4/d6HvvYGrEL8F1SRAAQoav5jNCsDULSa+vJqev7ZuGUC66ck+17mcv/kZAz8u7/O/CKBDPyRLMLwi2Xq/hHvXPnnY1T8Nwdq/pZ9gvkUPmL/UP/2+AyILP8hmkb2o7gu/UygfwIfvWb/jDCw/w9h1P5Lj5T//ase/R00OP0J18D59aA/AIIgZP80Zhr30VKI/XKuAPw4UUT/5GQM/Lu/zvwmBp7+RoBg/1l+Jv9v6vz4njpw/4SS/vy73Hj3V3iG+Meluv1MbDT9dILq9XuAjPyKy5r/L4Ym/TKlSP71ryD3iACs/Bel5v96D5j6uVho/KlSBv6pt6D0M9UU//s2bP0JXAkAOFFE/+RkDP81UBj8Jgae/jRSHP9cox7+dW5A8ZKO2Py4Fpr/Jnvo+Hb+oPvsTWL9lrQI/+7XNvn5k5T8GNc6/PKkuv28Piz++7Ny+VGJIP0iZyb9usTs/nrMjP4hYnb9LLcM9rA6bvqDDkT880UQ/DhRRP/kZAz/NVAY/CYGnv9LtCz84Tm896BkIP6C2lj+Jc0A/N4izP5jyab/+0Eu/Owj0PoHzIMB6tBi/+HEmP78ufT599nc90/9tP1SIKL0RXZs/R5yKvia5PL6c+EW/XgkZv+esWMAsG8k/pkdwvte5nL/5GQM/Lu/zvwigQz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQcAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABwAAAAAAAAAAAADlzoW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAClPqPQAAAABOWtm/AAAAAN+CxTsAAAAA7gn0PwAAAADJKdK9AAAAAH5g7T8AAAAAB+UWvQAAAADmNem/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1DBctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPltET4AAAAAooL+vwAAAABicbS9AAAAAL+c6T8AAAAADvy2PQAAAABdl/w/AAAAAKxF070AAAAAJLv+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH9Bw7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8T5W7AAAAAP44+78AAAAA+ue6vQAAAAD3z/g/AAAAAIwHjL0AAAAABE3oPwAAAADtiMG9AAAAAIjL/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ1UK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxIvbvQAAAAAcrOK/AAAAACOi+zwAAAAAzqAAQAAAAAAJJLO9AAAAAJFd9D8AAAAAYNSpPQAAAACIEPG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA19ddtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEIj4j0AAAAAD2TyvwAAAABFrrs9AAAAAO8N7D8AAAAAMXLWvAAAAAD+Auo/AAAAABIpg7sAAAAA+CEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLFqrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmGZc6AAAAANKA3b8AAAAAgK04PAAAAACe8e8/AAAAALY8dD0AAAAA7yzpPwAAAABkUPQ9AAAAAOQn9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1maM2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnYlQvAAAAAA8VfS/AAAAAAqysbwAAAAAvsr/PwAAAAAst9g9AAAAALje9j8AAAAAF2/6vQAAAABPzdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0x4jNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPXkGToAAAAAueztvwAAAADr6HM9AAAAALTt2j8AAAAAZfLmPAAAAADJ9N0/AAAAAEmMg7wAAAAAudTuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhcOLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAXcbO8AAAAAJ614b8AAAAAUnGxvQAAAABdB+I/AAAAAIQ22TwAAAAAlUv3PwAAAADDMqU9AAAAAKTQ478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADSdFq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyv2/PQAAAADUJ+C/AAAAAAyXEr4AAAAAGt/8PwAAAAD7v3Y9AAAAALsQ4D8AAAAACoDnvAAAAAADFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJukNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEXSzL0AAAAAvTr1vwAAAACjqwM+AAAAANWu2j8AAAAA+x0YPAAAAADQuOQ/AAAAANgAFz0AAAAAMu7ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFQTOjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB6kgY+AAAAAPLC3L8AAAAAS1sEPQAAAAAM0to/AAAAAJYn9T0AAAAAMFvxPwAAAADPu8e9AAAAAFRb678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM0cK0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALzzcvQAAAACiaOe/AAAAAIew470AAAAAscflPwAAAAAdcO+8AAAAAKmbAEAAAAAAm0QuvAAAAAArWui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALhOPtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDjLDT0AAAAAbd7YvwAAAADxlcs8AAAAAL3B7j8AAAAAC7fDvQAAAADRieY/AAAAAFElzL0AAAAAMtH/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFJEhjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBH68S9AAAAAKAr8L8AAAAA90iGPQAAAADXC+g/AAAAAEF+5L0AAAAAr7TvPwAAAAC70fk7AAAAACiw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA+u2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdGkLPgAAAAAdPua/AAAAANX3270AAAAA0wT6PwAAAADZe5C9AAAAAHFt2z8AAAAASCzHuwAAAADLTdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ6uIdQwbl2MAWyUTegDjAF0lEdAme9BEBsAN3V9lChoBkdAnpeAeA/cFmgHTegDaAhHQJnwZrAP/aR1fZQoaAZHQKBIwNjslcBoB03oA2gIR0CZ8TGi5/b1dX2UKGgGR0Cf8uHpr1ujaAdN6ANoCEdAmfKG3OObRXV9lChoBkdAoIiJ9qk/KWgHTegDaAhHQJn19b4agmJ1fZQoaAZHQKDAFLeQ+2VoB03oA2gIR0CaAuhESdvsdX2UKGgGR0CgorbJfYz0aAdN6ANoCEdAmgQxnjABUHV9lChoBkdAoKiNIuoP1GgHTegDaAhHQJoPCNGViWp1fZQoaAZHQKB4CU6gdwNoB03oA2gIR0CaD/AVwgkkdX2UKGgGR0ChG1TbvgFYaAdN6ANoCEdAmhJ+avzOHHV9lChoBkdAobZwgieNDWgHTegDaAhHQJoVRsBQvYh1fZQoaAZHQKHwhQpnYg9oB03oA2gIR0CaFbTzd1uBdX2UKGgGR0ChWDtwBHTaaAdN6ANoCEdAmha9nf2saXV9lChoBkdAoRS6fL9uP2gHTegDaAhHQJoY5MrVe8h1fZQoaAZHQKFfNcvduYRoB03oA2gIR0CaGxXZ5AyEdX2UKGgGR0Cgu6K33HrAaAdN6ANoCEdAmhuRjJ+2E3V9lChoBkdAlkSgBo24u2gHTegDaAhHQJopP/giu+11fZQoaAZHQJ8xQjLSuyNoB03oA2gIR0CaKm/wiJO4dX2UKGgGR0CYtYXoTwlTaAdN6ANoCEdAmitDIvJzUHV9lChoBkdAn4oUug6EJ2gHTegDaAhHQJostp35eqt1fZQoaAZHQJvQNTyauwJoB03oA2gIR0CaMIBVuJk5dX2UKGgGR0CgzydweeWfaAdN6ANoCEdAmj0ISlFc6nV9lChoBkdAngnnPNVzZGgHTegDaAhHQJo+NGI9C/p1fZQoaAZHQJurKLLpzLhoB03oA2gIR0CaRwmukk8idX2UKGgGR0CdibHGS6lMaAdN6ANoCEdAmkgadH2AXnV9lChoBkdAnZ4eUt7KJWgHTegDaAhHQJpKuHTI/7l1fZQoaAZHQJsafWZqmCRoB03oA2gIR0CaTXfra/RFdX2UKGgGR0CdNA2B8QZoaAdN6ANoCEdAmk3qt9x6wHV9lChoBkdAnx89Net0WGgHTegDaAhHQJpPASPEKmd1fZQoaAZHQJ6fsv38GcFoB03oA2gIR0CaUN2/zreJdX2UKGgGR0CVVJ+wkgOjaAdN6ANoCEdAmlLsMd92HXV9lChoBkdAnlUIvN/vv2gHTegDaAhHQJpTV0dRzil1fZQoaAZHQJSXP4Glhw5oB03oA2gIR0CaX0dfb9IgdX2UKGgGR0ChgnOd5IH1aAdN6ANoCEdAmmCGwJPZZnV9lChoBkdAoak8zyjHn2gHTegDaAhHQJphT1TR6Wx1fZQoaAZHQJ56vYFqzqtoB03oA2gIR0CaYpk8A7xNdX2UKGgGR0CdMid07r9maAdN6ANoCEdAmmX7+PzWgHV9lChoBkdAoUeUFlkH2WgHTegDaAhHQJpxGl+EytV1fZQoaAZHQJ7R2Myad+ZoB03oA2gIR0CachQgcLjQdX2UKGgGR0CZ7QSzPa+OaAdN6ANoCEdAmnvbEHdGiHV9lChoBkdAoVh544ZMtmgHTegDaAhHQJp8pZZB9kV1fZQoaAZHQKBi3XarWAhoB03oA2gIR0CafyH1e0HAdX2UKGgGR0Ce0YjIJZ4faAdN6ANoCEdAmoH6Z+hGpnV9lChoBkdAnIYEWM0gsGgHTegDaAhHQJqCcKw6hg51fZQoaAZHQKDWEafBeoloB03oA2gIR0Cag37YTTOPdX2UKGgGR0Cf0CzdUKiPaAdN6ANoCEdAmoWM6/7BPHV9lChoBkdAn/wMOby6MGgHTegDaAhHQJqHgAEMb3p1fZQoaAZHQKA1/XkHUttoB03oA2gIR0Cah/lyzXz2dX2UKGgGR0Ce/A89Oh0yaAdN6ANoCEdAmpToTTOPenV9lChoBkdAndgq1G9YfWgHTegDaAhHQJqV+zw+dLB1fZQoaAZHQJ47BT6zmfZoB03oA2gIR0CalrXOnl4kdX2UKGgGR0CeZXJDVpbmaAdN6ANoCEdAmpgARPGhmHV9lChoBkdAnN5EqlP8AWgHTegDaAhHQJqbY8FINEx1fZQoaAZHQKAQaLDye7NoB03oA2gIR0CapuziS7oTdX2UKGgGR0CfdZ3TNMXaaAdN6ANoCEdAmqgFt0mtyXV9lChoBkdAnnLjr7fpEGgHTegDaAhHQJqwtDst03h1fZQoaAZHQKCggahHskZoB03oA2gIR0CasWBOYYzjdX2UKGgGR0CevlywfQruaAdN6ANoCEdAmrOohpxm03V9lChoBkdAnHIMDwH7g2gHTegDaAhHQJq147MgU111fZQoaAZHQJ8mnEIgNgBoB03oA2gIR0CatjtdAxBWdX2UKGgGR0Cc97slb/wRaAdN6ANoCEdAmrcfGQ0XQHV9lChoBkdAoB9raufVZ2gHTegDaAhHQJq5Lp8neBR1fZQoaAZHQKBEXCHARChoB03oA2gIR0Cau1I91U2ldX2UKGgGR0CgZPGmUGFBaAdN6ANoCEdAmrvDrZ8KHHV9lChoBkdAn0Cj9fkWAWgHTegDaAhHQJrHqr0aqCJ1fZQoaAZHQKF3AsLfDUFoB03oA2gIR0CayQaMaS9vdX2UKGgGR0CfTv/WDpTuaAdN6ANoCEdAmsnK0dBBzHV9lChoBkdAoOVamwaBJGgHTegDaAhHQJrLByBClad1fZQoaAZHQKAXyYR/ViFoB03oA2gIR0CazirjYI0JdX2UKGgGR0CfYhc1O0swaAdN6ANoCEdAmtlHoouwo3V9lChoBkdAoSjM8s+V1WgHTegDaAhHQJraSqdYnv51fZQoaAZHQKD3FEcbR4RoB03oA2gIR0Ca4//io86ndX2UKGgGR0ChPTykTHsDaAdN6ANoCEdAmuTD+NtIkXV9lChoBkdAoAee38XN1WgHTegDaAhHQJrnHK8tf5V1fZQoaAZHQKDSElBQemxoB03oA2gIR0Ca6c9n9NvgdX2UKGgGR0Cg2hP114gSaAdN6ANoCEdAmuo38n/kvXV9lChoBkdAoXi4rc0tRWgHTegDaAhHQJrrRdVvMr51fZQoaAZHQKIa0HC4z8BoB03oA2gIR0Ca7aOxSpBHdX2UKGgGR0CfmveeWfK7aAdN6ANoCEdAmu+0RradtnV9lChoBkdAofosBsANomgHTegDaAhHQJrwLHS4OMF1fZQoaAZHQKAl4ATZg5RoB03oA2gIR0Ca/H9tdiUgdX2UKGgGR0CenmKpDNQkaAdN6ANoCEdAmv2uCkGiYnV9lChoBkdAnv78lw97nmgHTegDaAhHQJr+Yg2ZRbd1fZQoaAZHQJ9Yh/XoTwloB03oA2gIR0Ca/63gUDdQdX2UKGgGR0CgMR0hvBJqaAdN6ANoCEdAmwK44ACGOHV9lChoBkdAoEW3Vf/m1mgHTegDaAhHQJsOphCtzS11fZQoaAZHQKD7Rt/FzdVoB03oA2gIR0CbD8xYq5LAdX2UKGgGR0CgcfuRDCxeaAdN6ANoCEdAmxkSqU/wAnV9lChoBkdAoCaqS1Vo6GgHTegDaAhHQJsZwhfShJ11fZQoaAZHQJ79QifQKKJoB03oA2gIR0CbG+N4qwyJdX2UKGgGR0Chm9lq8DjjaAdN6ANoCEdAmx6Sr5qM33V9lChoBkdAoWRDUVi4KGgHTegDaAhHQJsfB9Sde6Z1fZQoaAZHQKAu4cCHRCxoB03oA2gIR0CbICZydWhidX2UKGgGR0CgrMajN6gNaAdN6ANoCEdAmyJAkgOjI3V9lChoBkdAoSvke4kNWmgHTegDaAhHQJskWR3eN1h1fZQoaAZHQKFOpJ+2E01oB03oA2gIR0CbJNN1yNn5dX2UKGgGR0Cg4L/IS13MaAdN6ANoCEdAmzDYc3l0YHV9lChoBkdAoRphcX3xnWgHTegDaAhHQJsyEpvxYq51fZQoaAZHQJcdlRDTjNpoB03oA2gIR0CbMteWv8qGdX2UKGgGR0ChBYvkq+ajaAdN6ANoCEdAmzQTfBN21XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13cc1ad9432f72dd0515092d20d8a34c29894b517f3fcda924c9747b8ce17620
3
+ size 1057560
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2023.046305999806, "std_reward": 313.3426895541724, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T05:43:52.829209"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:322fe17446a78627733f442e141f374a709c9a2d86c5adc7e5ffe759fccc2033
3
+ size 2136